
No Quantum Speedup over Gradient Descent

Lower Bounds for Convex Optimization

Ankit Garg 1 Robin Kothari 2 Praneeth Netrapalli 1 Suhail Sherif 1,3

1Microsoft Research India

2Microsoft Quantum and Microsoft Research

3Vector Institute, Toronto

Gradient Descent

Gradient Descent

The Gradient Descent method [Cauchy ‘47]

1

Gradient Descent

The Gradient Descent method [Cauchy ‘47]

• Compute the function at a point.

1

Gradient Descent

The Gradient Descent method [Cauchy ‘47]

• Compute the function at a point.

• Find the gradient at that point.

1

Gradient Descent

The Gradient Descent method [Cauchy ‘47]

• Compute the function at a point.

• Find the gradient at that point.

• Take a step in the opposite direction.

1

Gradient Descent

The Gradient Descent method [Cauchy ‘47]

• Compute the function at a point.

• Find the gradient at that point.

• Take a step in the opposite direction.

• Repeat.

1

Gradient Descent

The Gradient Descent method [Cauchy ‘47]

• Compute the function at a point.

• Find the gradient at that point.

• Take a step in the opposite direction.

• Repeat.

1

Gradient Descent

The Gradient Descent method [Cauchy ‘47]

• Compute the function at a point.

• Find the gradient at that point.

• Take a step in the opposite direction.

• Repeat.

1

Gradient Descent

The Gradient Descent method [Cauchy ‘47]

• Compute the function at a point.

• Find the gradient at that point.

• Take a step in the opposite direction.

• Repeat.

1

Gradient Descent

The Gradient Descent method [Cauchy ‘47]

• Compute the function at a point.

• Find the gradient at that point.

• Take a step in the opposite direction.

• Repeat.

1

Gradient Descent

The Gradient Descent method [Cauchy ‘47]

• Compute the function at a point.

• Find the gradient at that point.

• Take a step in the opposite direction.

• Repeat.

1

Gradient Descent

The Gradient Descent method [Cauchy ‘47]

• Compute the function at a point.

• Find the gradient at that point.

• Take a step in the opposite direction.

• Repeat.

1

Gradient Descent

The Gradient Descent method [Cauchy ‘47]

• Compute the function at a point.

• Find the gradient at that point.

• Take a step in the opposite direction.

• Repeat.

1

Gradient Descent

The Gradient Descent method [Cauchy ‘47]

• Compute the function at a point.

• Find the gradient at that point.

• Take a step in the opposite direction.

• Repeat.

1

Gradient Descent

The Gradient Descent method [Cauchy ‘47]

• Compute the function at a point.

• Find the gradient at that point.

• Take a step in the opposite direction.

• Repeat.

• Magical performance in high dimensions.

1

Gradient Descent

The Gradient Descent method [Cauchy ‘47]

• Compute the function at a point.

• Find the gradient at that point.

• Take a step in the opposite direction.

• Repeat.

• Magical performance in high dimensions.

• Very useful for finding optimal parameters.

1

Gradient Descent

The Gradient Descent method [Cauchy ‘47]

• Compute the function at a point.

• Find the gradient at that point.

• Take a step in the opposite direction.

• Repeat.

• Magical performance in high dimensions.

• Very useful for finding optimal parameters.

• Finding gradients:

1

Gradient Descent

The Gradient Descent method [Cauchy ‘47]

• Compute the function at a point.

• Find the gradient at that point.

• Take a step in the opposite direction.

• Repeat.

• Magical performance in high dimensions.

• Very useful for finding optimal parameters.

• Finding gradients:
• Hard: Requires dimension many function evaluations.

1

Gradient Descent

The Gradient Descent method [Cauchy ‘47]

• Compute the function at a point.

• Find the gradient at that point.

• Take a step in the opposite direction.

• Repeat.

• Magical performance in high dimensions.

• Very useful for finding optimal parameters.

• Finding gradients:
• Hard: Requires dimension many function evaluations.
• Easy: Cheap Gradient Principle [GW ‘08]

Compute f (x),∇f (x) in time linear in computing f (x).

1

Gradient Descent

The Gradient Descent method [Cauchy ‘47]

• Compute the function at a point.

• Find the gradient at that point.

• Take a step in the opposite direction.

• Repeat.

• Magical performance in high dimensions.

• Very useful for finding optimal parameters.

• Finding gradients:
• Hard: Requires dimension many function evaluations.
• Easy: Cheap Gradient Principle [GW ‘08]

Compute f (x),∇f (x) in time linear in computing f (x).

• Guarantees?

1

First-Order Convex
Optimization

The Task

Given: a convex region B, first-order oracle access to a convex
function f : Rn → R.

On input x , oracle Of returns f (x),∇f (x).

2

The Task

Given: a convex region B, first-order oracle access to a convex
function f : Rn → R.

Find x∗ = argmin
x∈B

f (x).

2

The Task

Given: a convex region B, first-order oracle access to a convex
function f : Rn → R.

Find x � ∈ B s.t. f (x �) ≤ min
x∈B

f (x) + �.

2

The Task

Given: a convex region B, first-order oracle access to a convex
function f : Rn → R.

Find x � ∈ B s.t. f (x �) ≤ min
x∈B

f (x) + �.

2

The Task

Given: a convex region B, first-order oracle access to a convex
function f : Rn → R.

Find x � ∈ B s.t. f (x �) ≤ min
x∈B

f (x) + �.

2

The Task

Given: a convex region B, first-order oracle access to a convex
function f : Rn → R.

Find x � ∈ B s.t. f (x �) ≤ min
x∈B

f (x) + �.

�-optimal for G-Lipschitz function in ball of radius R
⇐⇒

�/GR-optimal for 1-Lipschitz function in ball of radius 1

2

The Task

Given: a convex region B, first-order oracle access to a convex
function f : Rn → R.

Find x � ∈ B s.t. f (x �) ≤ min
x∈B

f (x) + �.

2

The Task

Given: a convex region B, first-order oracle access to a convex
function f : Rn → R.

Find x � ∈ B s.t. f (x �) ≤ min
x∈B

f (x) + �.

2

The Task

Given: a convex region B, first-order oracle access to a convex
function f : Rn → R.

Find x � ∈ B s.t. f (x �) ≤ min
x∈B

f (x) + �.

g ∈ ∇f (x) ⇔ f (x + v) ≥ f (x) + �v , g� for all v

2

Known Algorithms I

1-dimensional fn:

3

Known Algorithms I

1-dimensional fn:

3

Known Algorithms I

1-dimensional fn:

3

Known Algorithms I

1-dimensional fn:

3

Known Algorithms I

1-dimensional fn:

3

Known Algorithms I

1-dimensional fn:

3

Known Algorithms I

1-dimensional fn:

log(1/�) steps.

3

Known Algorithms I

n-dimensional fn:

3

Known Algorithms I

n-dimensional fn:
(Center of Gravity Method)

3

Known Algorithms I

n-dimensional fn:
(Center of Gravity Method)

≈ log

�
Vol(B(1))
Vol(B(�))

�

= n log(1/�) steps.

3

Known Algorithms II

Center of Gravity Method

n log(1/�) steps. Projected Subgradient Descent

x

x∗

Known Algorithms II

Center of Gravity Method

n log(1/�) steps. Projected Subgradient Descent

x

x∗

x � = x − ηgx

4

Known Algorithms II

Center of Gravity Method

n log(1/�) steps. Projected Subgradient Descent

x

x∗

x � = x − ηgx

�−gx , x∗ − x� ≥ f (x)− f (x∗).

4

Known Algorithms II

Center of Gravity Method

n log(1/�) steps. Projected Subgradient Descent

x

x∗

x � = x − ηgx

�−gx , x∗ − x� ≥ f (x)− f (x∗).

�x∗ − x ��2 ≤ �x∗ − x�2 + η2 − 2η(f (x)− f (x∗)).

4

Known Algorithms II

Center of Gravity Method

n log(1/�) steps.

Projected Subgradient Descent

1/�2 steps.

4

Known Algorithms II

Center of Gravity Method

n log(1/�) steps.

Projected Subgradient Descent

1/�2 steps.

Fix �

Dimension n →

1 1/�2 1/�4

4

Known Algorithms II

Center of Gravity Method

n log(1/�) steps.

Projected Subgradient Descent

1/�2 steps.

Fix �

Dimension n →

1 1/�2 1/�4

Classical: Deterministic

4

Known Algorithms II

Center of Gravity Method

n log(1/�) steps.

Projected Subgradient Descent

1/�2 steps.

Fix �

Dimension n →

1 1/�2 1/�4

[NY ‘83]
Ω(1/�2) queries

Classical: Deterministic

4

Known Algorithms II

Center of Gravity Method

n log(1/�) steps.

Projected Subgradient Descent

1/�2 steps.

Fix �

Dimension n →

1 1/�2 1/�4

Classical: Randomized

4

Known Algorithms II

Center of Gravity Method

n log(1/�) steps.

Projected Subgradient Descent

1/�2 steps.

Fix �

Dimension n →

1 1/�2 1/�4

[BJLLS ‘19]
Ω(1/�2) queries

Classical: Randomized

4

Known Algorithms II

Center of Gravity Method

n log(1/�) steps.

Projected Subgradient Descent

1/�2 steps.

Fix �

Dimension n →

1 1/�2 1/�4

[BJLLS ‘19]
Ω(1/�2) queries

Classical: Randomized

Theorem (Garg-Kothari-Netrapalli-S. ‘20)
For any � > 0, there is a family of 1-Lipschitz functions {f : Rn → R}
with n = Θ(1/�2) such that any randomized algorithm solving
first-order convex optimization on these requires Ω(1/�2) queries.

4

Lower Bounds

Theme for Lower Bounds

5

Theme for Lower Bounds

• Find functions that encode information.

5

Theme for Lower Bounds

• Find functions that encode information.

• �-minimizing f =⇒ Learning the encoded information.

5

Theme for Lower Bounds

• Find functions that encode information.

• �-minimizing f =⇒ Learning the encoded information.

• Each query should access the information in a controlled
manner.

5

Lower Bounds

Randomized Lower Bound

The Base Function

f : Rn → R

f (x) = max{x1, x2, . . . , xn}.

6

The Base Function

f : Rn → R

f (x) = max{x1, x2, . . . , xn}.

Minimum = − 1√
n ,

6

The Base Function

f : Rn → R

f (x) = max{x1, x2, . . . , xn}.

Minimum = − 1√
n , at x =

�
− 1√

n , . . . ,−
1√
n

�
.

6

The Base Function

f : Rn → R

f (x) = max{x1, x2, . . . , xn}.

Minimum = − 1√
n , at x =

�
− 1√

n , . . . ,−
1√
n

�
.

If xi is a maximum, then ei is a subgradient.

6

Function Class

z ∈ {+1,−1}n

fz(x) = max{z1x1, z2x2, . . . , znxn}.

7

Function Class

z ∈ {+1,−1}n

fz(x) = max{z1x1, z2x2, . . . , znxn}.

Minimum = − 1√
n ,

7

Function Class

z ∈ {+1,−1}n

fz(x) = max{z1x1, z2x2, . . . , znxn}.

Minimum = − 1√
n , at x =

�
− z1√

n , . . . ,−
zn√

n

�
.

7

Function Class

z ∈ {+1,−1}n

fz(x) = max{z1x1, z2x2, . . . , znxn}.

Minimum = − 1√
n , at x =

�
− z1√

n , . . . ,−
zn√

n

�
.

Set � = .9√
n .

7

Function Class

z ∈ {+1,−1}n

fz(x) = max{z1x1, z2x2, . . . , znxn}.

Minimum = − 1√
n , at x =

�
− z1√

n , . . . ,−
zn√

n

�
.

Set � = .9√
n .

The behaviour of f
z1 z2 z3 z4 zn

7

Function Class

z ∈ {+1,−1}n

fz(x) = max{z1x1, z2x2, . . . , znxn}.

Minimum = − 1√
n , at x =

�
− z1√

n , . . . ,−
zn√

n

�
.

Set � = .9√
n .

The behaviour of f
z1 z2 z3 z4 zn

0

x1 x2 x3 x4 xn

7

Function Class

z ∈ {+1,−1}n

fz(x) = max{z1x1, z2x2, . . . , znxn}.

Minimum = − 1√
n , at x =

�
− z1√

n , . . . ,−
zn√

n

�
.

Set � = .9√
n .

The behaviour of f
z1 z2 z3 z4 zn

0

x1 x2 x3 x4 xn

+

7

Function Class

z ∈ {+1,−1}n

fz(x) = max{z1x1, z2x2, . . . , znxn}.

Minimum = − 1√
n , at x =

�
− z1√

n , . . . ,−
zn√

n

�
.

Set � = .9√
n .

The behaviour of f
z1 z2 z3 z4 zn

0

x1 x2 x3 x4 xn

++

7

Function Class

z ∈ {+1,−1}n

fz(x) = max{z1x1, z2x2, . . . , znxn}.
Minimum = − 1√

n , at x =
�
− z1√

n , . . . ,−
zn√

n

�
.

Set � = .9√
n .

The behaviour of f
z1 z2 z3 z4 zn

0

x1 x2 x3 x4 xn

++

≈ 2 bits of z revealed per query.
7

Function Class

z ∈ {+1,−1}n

fz(x) = max{z1x1, z2x2, . . . , znxn}.

Minimum = − 1√
n , at x =

�
− z1√

n , . . . ,−
zn√

n

�
.

Set � = .9√
n .

The behaviour of f
z1 z2 z3 z4 zn

0

x1 x2 x3 x4 xn

++

7

Function Class

z ∈ {+1,−1}n

fz(x) = max{z1x1, z2x2, . . . , znxn}.

Minimum = − 1√
n , at x =

�
− z1√

n , . . . ,−
zn√

n

�
.

Set � = .9√
n .

The behaviour of f
z1 z2 z3 z4 zn

0

x1 x2 x3 x4 xn

++ − + −

7

Function Class

z ∈ {+1,−1}n

fz(x) = max{z1x1, z2x2, . . . , znxn}.
Minimum = − 1√

n , at x =
�
− z1√

n , . . . ,−
zn√

n

�
.

Set � = .9√
n .

The behaviour of f
z1 z2 z3 z4 zn

0

x1 x2 x3 x4 xn

++ − + −

Finding �-optimal point =⇒ learning z.
7

Function Class

z ∈ {+1,−1}n

fz(x) = max{z1x1, z2x2, . . . , znxn}.
Minimum = − 1√

n , at x =
�
− z1√

n , . . . ,−
zn√

n

�
.

Set � = .9√
n .

The behaviour of f
z1 z2 z3 z4 zn

0

x1 x2 x3 x4 xn

++ − + −

Requires Ω(n) = Ω(1/�2)

queries.
7

Quantum Computing

Quantum Reality

8

Quantum Reality

Particles can be in a superposition of states.

8

Quantum Reality

Particles can be in a superposition of states.

α|Left Slit�+ β|Right Slit�, with |α|2 + |β|2 = 1.

8

Quantum Reality

Particles can be in a superposition of states.

α|Left Slit�+ β|Right Slit�, with |α|2 + |β|2 = 1.

Each component of the superposition “evolves” as it would have
without the superposition.

8

Quantum Reality

Particles can be in a superposition of states.

α|Left Slit�+ β|Right Slit�, with |α|2 + |β|2 = 1.

Each component of the superposition “evolves” as it would have
without the superposition.

|Left Slit� �→ |Left Spread� and |Right Slit� �→ |Right Spread�.

8

Quantum Reality

Particles can be in a superposition of states.

α|Left Slit�+ β|Right Slit�, with |α|2 + |β|2 = 1.

Each component of the superposition “evolves” as it would have
without the superposition.

|Left Slit� �→ |Left Spread� and |Right Slit� �→ |Right Spread�.

The actual state is the sum of the states of each component:
α|Left Spread�+ β|Right Spread�. 8

Quantum Computer

• A classical computer has a memory that is in one of
2memory size in bits states.

9

Quantum Computer

• A classical computer has a memory that is in one of
2memory size in bits states.

• A quantum computer’s memory can be in a superposition of
these ‘base’ states.

9

Quantum Computer

• A classical computer has a memory that is in one of
2memory size in bits states.

• A quantum computer’s memory can be in a superposition of
these ‘base’ states.

|φ�MEMORY =
�

m∈{0,1}memory size

αm|m�MEMORY with
�

|αm|2 = 1.

9

Quantum Computer

• A classical computer has a memory that is in one of
2memory size in bits states.

• A quantum computer’s memory can be in a superposition of
these ‘base’ states.

|φ�MEMORY =
�

m∈{0,1}memory size

αm|m�MEMORY with
�

|αm|2 = 1.

|φ�MEMORY , where φ ∈ C2memory size
and �φ�2 = 1.

9

Quantum Computer

• A classical computer has a memory that is in one of
2memory size in bits states.

• A quantum computer’s memory can be in a superposition of
these ‘base’ states.

|φ�MEMORY =
�

m∈{0,1}memory size

αm|m�MEMORY with
�

|αm|2 = 1.

|φ�MEMORY , where φ ∈ C2memory size
and �φ�2 = 1.

• Permitted operations are those that preserve norms.

9

Quantum Computer

• A classical computer has a memory that is in one of
2memory size in bits states.

• A quantum computer’s memory can be in a superposition of
these ‘base’ states.

|φ�MEMORY =
�

m∈{0,1}memory size

αm|m�MEMORY with
�

|αm|2 = 1.

|φ�MEMORY , where φ ∈ C2memory size
and �φ�2 = 1.

• Permitted operations are those that preserve norms.

• Can apply a unitary M to the state |φ� to get the new state |Mφ�.

9

Quantum Computer

• A classical computer has a memory that is in one of
2memory size in bits states.

• A quantum computer’s memory can be in a superposition of
these ‘base’ states.

|φ�MEMORY =
�

m∈{0,1}memory size

αm|m�MEMORY with
�

|αm|2 = 1.

|φ�MEMORY , where φ ∈ C2memory size
and �φ�2 = 1.

• Permitted operations are those that preserve norms.

• Can apply a unitary M to the state |φ� to get the new state |Mφ�.
• Every base state gets mapped to a valid superposition.

9

Quantum Computer

• A classical computer has a memory that is in one of
2memory size in bits states.

• A quantum computer’s memory can be in a superposition of
these ‘base’ states.

|φ�MEMORY =
�

m∈{0,1}memory size

αm|m�MEMORY with
�

|αm|2 = 1.

|φ�MEMORY , where φ ∈ C2memory size
and �φ�2 = 1.

• Permitted operations are those that preserve norms.

• Can apply a unitary M to the state |φ� to get the new state |Mφ�.
• Every base state gets mapped to a valid superposition.
• Each of these mappings are orthonormal.

9

Quantum Computer

• A classical computer has a memory that is in one of
2memory size in bits states.

• A quantum computer’s memory can be in a superposition of
these ‘base’ states.

|φ�MEMORY =
�

m∈{0,1}memory size

αm|m�MEMORY with
�

|αm|2 = 1.

|φ�MEMORY , where φ ∈ C2memory size
and �φ�2 = 1.

• Permitted operations are those that preserve norms.

• Can apply a unitary M to the state |φ� to get the new state |Mφ�.
• Every base state gets mapped to a valid superposition.
• Each of these mappings are orthonormal.
• Just changing the basis.

9

Quantum Tricks

• Can take advantage of Fourier transforms.

• The vectors

1√
N

1
1
1
...
1

,
1√
N

1
ω

ω2

...
ωN−1

,
1√
N

1
ω2

ω4

...
ω2(N−1)

,
1√
N

1
ω3

ω6

...
ω3(N−1)

, · · ·

are all orthonormal where ω = ei2π/N is the principal Nth root of
unity.

10

Computing Gradients

f : R2 → R

11

Computing Gradients

f : R2 → R

Example state:

��

i

αi |xi yi �INPUT

�
|0�OUTPUT |0�OTHER VARS

11

Computing Gradients

f : R2 → R, f (x , y) = ax + by

Initial state:

 1√

N

�

i∈[N]

|xi �INPUT1

 1√

N

�

j∈[N]

|yj �INPUT2

 |0�OUTPUT

11

Computing Gradients

f : R2 → R, f (x , y) = ax + by

Initial state:

 1√

N

�

i∈[N]

|xi �INPUT1

 1√

N

�

j∈[N]

|yj �INPUT2

 |0�OUTPUT

Query:
1
N

�

i∈[N]

�

j∈[N]

|xi �INPUT1 |yj �INPUT2 |f (xi , yj)�OUTPUT

11

Computing Gradients

f : R2 → R, f (x , y) = ax + by

Initial state:

 1√

N

�

i∈[N]

|xi �INPUT1

 1√

N

�

j∈[N]

|yj �INPUT2

 |0�OUTPUT

Query:
1
N

�

i∈[N]

�

j∈[N]

|xi �INPUT1 |yj �INPUT2 |f (xi , yj)�OUTPUT

Add phases:
1
N

�

i∈[N]

�

j∈[N]

ω
f (xi ,yj)N

2

3 |xi �INPUT1 |yj �INPUT2 |f (xi , yj)�OUTPUT

11

Computing Gradients

f : R2 → R, f (x , y) = ax + by

Initial state:

 1√

N

�

i∈[N]

|xi �INPUT1

 1√

N

�

j∈[N]

|yj �INPUT2

 |0�OUTPUT

Query:
1
N

�

i∈[N]

�

j∈[N]

|xi �INPUT1 |yj �INPUT2 |f (xi , yj)�OUTPUT

Add phases:
1
N

�

i∈[N]

�

j∈[N]

ω
f (xi ,yj)N

2

3 |xi �INPUT1 |yj �INPUT2 |f (xi , yj)�OUTPUT

Query again (to undo):
1
N

�

i∈[N]

�

j∈[N]

ω
f (xi ,yj)N

2

3 |xi �INPUT1 |yj �INPUT2 |0�OUTPUT

11

Computing Gradients

f : R2 → R, f (x , y) = ax + by

Initial state:

 1√

N

�

i∈[N]

|xi �INPUT1

 1√

N

�

j∈[N]

|yj �INPUT2

 |0�OUTPUT

Query:
1
N

�

i∈[N]

�

j∈[N]

|xi �INPUT1 |yj �INPUT2 |f (xi , yj)�OUTPUT

Add phases:
1
N

�

i∈[N]

�

j∈[N]

ω
f (xi ,yj)N

2

3 |xi �INPUT1 |yj �INPUT2 |f (xi , yj)�OUTPUT

Query again (to undo):
1
N

�

i∈[N]

�

j∈[N]

ω
f (xi ,yj)N

2

3 |xi �INPUT1 |yj �INPUT2 |0�OUTPUT

Equals:

ω(ax1+by1)
N2
3

 1√

N

�

i∈[N]

ω
aiN
3 |x1 + i/N�INPUT1

 1√

N

�

j∈[N]

ω
bjN
3 |y1 + j/N�INPUT2

 |0�OUTPUT

11

Computing Gradients

f : R2 → R, f (x , y) = ax + by

ω(ax1+by1)
N2
3

 1√

N

�

i∈[N]

ω
aiN
3 |x1 + i/N�INPUT1

 1√

N

�

j∈[N]

ω
bjN
3 |y1 + j/N�INPUT2

 |0�OUTPUT

11

Computing Gradients

f : R2 → R, f (x , y) = ax + by

ω(ax1+by1)
N2
3

 1√

N

�

i∈[N]

ω
aiN
3 |x1 + i/N�INPUT1

 1√

N

�

j∈[N]

ω
bjN
3 |y1 + j/N�INPUT2

 |0�OUTPUT

Change basis: ωf (x1,y1)
N2
3 |aN/3�PHASE1

 1√

N

�

j∈[N]

ω
bjN
3 |y1 + j/N�INPUT2

 |0�OUTPUT

11

Computing Gradients

f : R2 → R, f (x , y) = ax + by

ω(ax1+by1)
N2
3

 1√

N

�

i∈[N]

ω
aiN
3 |x1 + i/N�INPUT1

 1√

N

�

j∈[N]

ω
bjN
3 |y1 + j/N�INPUT2

 |0�OUTPUT

Change basis: ωf (x1,y1)
N2
3 |aN/3�PHASE1

 1√

N

�

j∈[N]

ω
bjN
3 |y1 + j/N�INPUT2

 |0�OUTPUT

For coord 2: ωf (x1,y1)
N2
3 |aN/3�PHASE1

|bN/3�PHASE2
|0�OUTPUT

11

Can quantum “do gradient descent” faster?

• Can find gradient with 2 queries to function oracle. [Jordan ‘05]

12

Can quantum “do gradient descent” faster?

• Can find gradient with 2 queries to function oracle. [Jordan ‘05]

• Hope: Use less than k queries to get the result of k gradient
descent steps?

12

Can quantum “do gradient descent” faster?

• Can find gradient with 2 queries to function oracle. [Jordan ‘05]

• Hope: Use less than k queries to get the result of k gradient
descent steps?

• Would join the ranks of unstructured search, period finding, vector
reconstruction etc.

12

Can quantum “do gradient descent” faster?

• Can find gradient with 2 queries to function oracle. [Jordan ‘05]

• Hope: Use less than k queries to get the result of k gradient
descent steps?

• Would join the ranks of unstructured search, period finding, vector
reconstruction etc.

12

Can quantum “do gradient descent” faster?

• Can find gradient with 2 queries to function oracle. [Jordan ‘05]

• Hope: Use less than k queries to get the result of k gradient
descent steps?

• Would join the ranks of unstructured search, period finding, vector
reconstruction etc.

For negative result, need to reformulate our question.

12

Can quantum “do gradient descent” faster?

• Can find gradient with 2 queries to function oracle. [Jordan ‘05]

• Hope: Use less than k queries to get the result of k gradient
descent steps?

• Would join the ranks of unstructured search, period finding, vector
reconstruction etc.

For negative result, need to reformulate our question.
Use First-Order Convex Optimization as a proxy for Gradient Descent.

12

Quantum Speedup

z ∈ {+1,−1}n

fz(x) = max{z1x1, z2x2, . . . , znxn}.

Minimum = − 1√
n , at x =

�
− z1√

n , . . . ,−
zn√

n

�
.

Set � = .9√
n .

13

Quantum Speedup

z ∈ {+1,−1}n

fz(x) = max{z1x1, z2x2, . . . , znxn}.

Minimum = − 1√
n , at x =

�
− z1√

n , . . . ,−
zn√

n

�
.

Set � = .9√
n .

A quantum algorithm can �-optimize the above function class in
O(

√
n) queries.

13

Quantum Speedup

z ∈ {+1,−1}n

fz(x) = max{z1x1, z2x2, . . . , znxn}.

Minimum = − 1√
n , at x =

�
− z1√

n , . . . ,−
zn√

n

�
.

Set � = .9√
n .

A quantum algorithm can �-optimize the above function class in
O(

√
n) queries.

For any S ⊆ [n], can find x such that

fz(x) = 1 iff
�

i∈S

zi = +

13

Quantum Speedup

z ∈ {+1,−1}n

fz(x) = max{z1x1, z2x2, . . . , znxn}.

Minimum = − 1√
n , at x =

�
− z1√

n , . . . ,−
zn√

n

�
.

Set � = .9√
n .

A quantum algorithm can �-optimize the above function class in
O(

√
n) queries.

For any S ⊆ [n], can find x such that

fz(x) = 1 iff
�

i∈S

zi = +

Can then use Belovs’ algorithm to learn z from such OR queries.

13

Known Algorithms II

Center of Gravity Method

n log(1/�) steps.

Projected Subgradient Descent

1/�2 steps.

Fix �

Dimension n →

1 1/�2 1/�4

Quantum

14

Known Algorithms II

Center of Gravity Method

n log(1/�) steps.

Projected Subgradient Descent

1/�2 steps.

Fix �

Dimension n →

1 1/�2 1/�4

[CCLW ‘18]
Ω(1/�) queries

Quantum

14

Known Algorithms II

Center of Gravity Method

n log(1/�) steps.

Projected Subgradient Descent

1/�2 steps.

Fix �

Dimension n →

1 1/�2 1/�4

[CCLW ‘18]
Ω(1/�) queries

Quantum

Theorem (Garg-Kothari-Netrapalli-S. ‘20)
For any � > 0, there is a family of 1-Lipschitz functions {f : Rn → R}
with n = Θ̃(1/�4) such that any quantum algorithm solving first-order
convex optimization on these requires Ω(1/�2) queries.

14

Quantum Computing

Quantum Lower Bound

The Query Model

We are provided with an oracle Of to access the unknown function f .

15

The Query Model

We are provided with an oracle Of to access the unknown function f .

• Input register INPUT with orthogonal states {|x�}x∈Rn

15

The Query Model

We are provided with an oracle Of to access the unknown function f .

• Input register INPUT with orthogonal states {|x�}x∈Rn

(rather for a discretization of Rn)

15

The Query Model

We are provided with an oracle Of to access the unknown function f .

• Input register INPUT with orthogonal states {|x�}x∈Rn

(rather for a discretization of Rn)

• Oracle Of ‘answers’ function value and subgradient queries.

15

The Query Model

We are provided with an oracle Of to access the unknown function f .

• Input register INPUT with orthogonal states {|x�}x∈Rn

(rather for a discretization of Rn)

• Oracle Of ‘answers’ function value and subgradient queries.

Usually

Of |x�INPUT |b�OUTPUT = |x�INPUT |b ⊕ “f (x),∇f (x)”�OUTPUT

15

The Query Model

We are provided with an oracle Of to access the unknown function f .

• Input register INPUT with orthogonal states {|x�}x∈Rn

(rather for a discretization of Rn)

• Oracle Of ‘answers’ function value and subgradient queries.

Usually

Of |x�INPUT |b�OUTPUT = |x�INPUT |b ⊕ “f (x),∇f (x)”�OUTPUT

• For f , f � s.t. f (x) = f �(x) and ∇f (x) = ∇f �(x):

Of |x�INPUT |φ�REST = Of � |x�INPUT |φ�REST

15

The Base Function

“Complexity of Highly Parallel Non-Smooth Convex Optimization”
- Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, Aaron Sidford

16

The Base Function

f : Rn → R

f (x) = max{x1, x2 − γ, x3 − 2γ, . . . , xk − (k − 1)γ}.

γ is small.

16

The Base Function

f : Rn → R

f (x) = max{x1, x2 − γ, x3 − 2γ, . . . , xk − (k − 1)γ}.

γ is small.

Minimum ≈ − 1√
k
, at x ≈

�
− 1√

k
, . . . ,− 1√

k
, 0, 0, · · ·

�
.

16

The Function Class

V = (v1, v2, . . . , vk) is a set of k orthonormal vectors in Rn.

17

The Function Class

V = (v1, v2, . . . , vk) is a set of k orthonormal vectors in Rn.

fV (x) = max{�v1, x�, �v2, x� − γ, �v3, x� − 2γ, . . . , �vk , x� − (k − 1)γ}.

17

The Function Class

V = (v1, v2, . . . , vk) is a set of k orthonormal vectors in Rn.

fV (x) = max{�v1, x�, �v2, x� − γ, �v3, x� − 2γ, . . . , �vk , x� − (k − 1)γ}.

Minimum ≈ − 1√
k
, at x ≈ − v1√

k
− v2√

k
· · ·− vk√

k
.

17

The Function Class

V = (v1, v2, . . . , vk) is a set of k orthonormal vectors in Rn.

fV (x) = max{�v1, x�, �v2, x� − γ, �v3, x� − 2γ, . . . , �vk , x� − (k − 1)γ}.

Minimum ≈ − 1√
k
, at x ≈ − v1√

k
− v2√

k
· · ·− vk√

k
.

Set � = .9√
k
.

17

The Function Class

V = (v1, v2, . . . , vk) is a set of k orthonormal vectors in Rn.

fV (x) = max{�v1, x�, �v2, x� − γ, �v3, x� − 2γ, . . . , �vk , x� − (k − 1)γ}.

Minimum ≈ − 1√
k
, at x ≈ − v1√

k
− v2√

k
· · ·− vk√

k
.

Set � = .9√
k
.

The behaviour of f

Let x ∈ Rn with �x� = 1.
Let v1, . . . , vk be orthonormal vectors sampled uniformly at random.

17

The Function Class

V = (v1, v2, . . . , vk) is a set of k orthonormal vectors in Rn.

fV (x) = max{�v1, x�, �v2, x� − γ, �v3, x� − 2γ, . . . , �vk , x� − (k − 1)γ}.

Minimum ≈ − 1√
k
, at x ≈ − v1√

k
− v2√

k
· · ·− vk√

k
.

Set � = .9√
k
.

The behaviour of f

Let x ∈ Rn with �x� = 1.
Let v1, . . . , vk be orthonormal vectors sampled uniformly at random.

�v1, x��v2, x��v3, x��v4, x��vk , x�
0

17

The Function Class

V = (v1, v2, . . . , vk) is a set of k orthonormal vectors in Rn.

fV (x) = max{�v1, x�, �v2, x� − γ, �v3, x� − 2γ, . . . , �vk , x� − (k − 1)γ}.

Minimum ≈ − 1√
k
, at x ≈ − v1√

k
− v2√

k
· · ·− vk√

k
.

Set � = .9√
k
.

The behaviour of f

Let x ∈ Rn with �x� = 1.
Let v1, . . . , vk be orthonormal vectors sampled uniformly at random.

0
1/

√
n

−1/
√

n

17

The Function Class

V = (v1, v2, . . . , vk) is a set of k orthonormal vectors in Rn.

fV (x) = max{�v1, x�, �v2, x� − γ, �v3, x� − 2γ, . . . , �vk , x� − (k − 1)γ}.

Minimum ≈ − 1√
k
, at x ≈ − v1√

k
− v2√

k
· · ·− vk√

k
.

Set � = .9√
k
.

The behaviour of f

Let x ∈ Rn with �x� = 1.
Let v1, . . . , vk be orthonormal vectors sampled uniformly at random.

0
1/

√
n

−1/
√

n

γ

−γ

17

The Function Class

V = (v1, v2, . . . , vk) is a set of k orthonormal vectors in Rn.

fV (x) = max{�v1, x�, �v2, x� − γ, �v3, x� − 2γ, . . . , �vk , x� − (k − 1)γ}.
Minimum ≈ − 1√

k
, at x ≈ − v1√

k
− v2√

k
· · ·− vk√

k
.

Set � = .9√
k
.

The behaviour of f

Let x ∈ Rn with �x� = 1.
Let v1, . . . , vk be orthonormal vectors sampled uniformly at random.

0
1/

√
n

−1/
√

n

γ

−γ

Whp, first query reveals v1.
v2 through vk nearly random from n − 1 dimensional space. 17

The Function Class

V = (v1, v2, . . . , vk) is a set of k orthonormal vectors in Rn.

fV (x) = max{�v1, x�, �v2, x� − γ, �v3, x� − 2γ, . . . , �vk , x� − (k − 1)γ}.

Minimum ≈ − 1√
k
, at x ≈ − v1√

k
− v2√

k
· · ·− vk√

k
.

Set � = .9√
k
.

The behaviour of f

Let x ∈ Rn with �x� = 1.
Let v1, . . . , vk be orthonormal vectors sampled uniformly at random.

0
1/

√
n

−1/
√

n

γ

−γ

↓ −.1/
√

k ↓

17

The Function Class

V = (v1, v2, . . . , vk) is a set of k orthonormal vectors in Rn.

fV (x) = max{�v1, x�, �v2, x� − γ, �v3, x� − 2γ, . . . , �vk , x� − (k − 1)γ}.

Minimum ≈ − 1√
k
, at x ≈ − v1√

k
− v2√

k
· · ·− vk√

k
.

Set � = .9√
k
.

The behaviour of f

Let x ∈ Rn with �x� = 1.
Let v1, . . . , vk be orthonormal vectors sampled uniformly at random.

0
1/

√
n

−1/
√

n

γ

−γ

17

The Function Class

V = (v1, v2, . . . , vk) is a set of k orthonormal vectors in Rn.

fV (x) = max{�v1, x�, �v2, x� − γ, �v3, x� − 2γ, . . . , �vk , x� − (k − 1)γ}.

Minimum ≈ − 1√
k
, at x ≈ − v1√

k
− v2√

k
· · ·− vk√

k
.

Set � = .9√
k
.

The behaviour of f

Let x ∈ Rn with �x� = 1.
Let v1, . . . , vk be orthonormal vectors sampled uniformly at random.

0
1/

√
n

−1/
√

n

γ

−γ

17

The Function Class

V = (v1, v2, . . . , vk) is a set of k orthonormal vectors in Rn.

fV (x) = max{�v1, x�, �v2, x� − γ, �v3, x� − 2γ, . . . , �vk , x� − (k − 1)γ}.
Minimum ≈ − 1√

k
, at x ≈ − v1√

k
− v2√

k
· · ·− vk√

k
.

Set � = .9√
k
.

The behaviour of f

Let x ∈ Rn with �x� = 1.
Let v1, . . . , vk be orthonormal vectors sampled uniformly at random.

0
1/

√
n

−1/
√

n

γ

−γ

vk still nearly at random from n − k dimensional space.
Can’t output �-optimal point. 17

The Hybrid Argument

First
query

|x1�|φ1�
+|x2�|φ2�
+|x3�|φ3�
+|x4�|φ4�
+|x5�|φ5�
+ · · ·

18

The Hybrid Argument

First
query

|x1�|φ1�
+|x2�|φ2�
+|x3�|φ3�
+|x4�|φ4�
+|x5�|φ5�
+ · · ·

pass through oracle for fV (x)−−−−−−−−−−−−−−−−→

18

The Hybrid Argument

First
query

|x1�|φ1�
+|x2�|φ2�
+|x3�|φ3�
+|x4�|φ4�
+|x5�|φ5�
+ · · ·

pass through oracle for fV (x)−−−−−−−−−−−−−−−−→

First
answer

|x1�|ψ1�
+|x2�|ψ2�
+|x3�|ψ3�
+|x4�|ψ4�
+|x5�|ψ5�
+ · · ·

18

The Hybrid Argument

First
query

|x1�|φ1�
+|x2�|φ2�
+|x3�|φ3�
+|x4�|φ4�
+|x5�|φ5�
+ · · ·

pass through oracle for f(v1)
(x)=�v1,x�−−−−−−−−−−−−−−−−−−−−−−→

Corrupted
answer

|x1�|ψ1�
+|x2�|ψ2�
+|x3�|ψ3�
+|x4�|ψ�

4�
+|x5�|ψ5�
+ · · ·

18

The Hybrid Argument

First
query

|x1�|φ1�
+|x2�|φ2�
+|x3�|φ3�
+|x4�|φ4�
+|x5�|φ5�
+ · · ·

pass through oracle for f(v1)
(x)=�v1,x�−−−−−−−−−−−−−−−−−−−−−−→

Corrupted
answer

|x1�|ψ1�
+|x2�|ψ2�
+|x3�|ψ3�
+|x4�|ψ�

4�
+|x5�|ψ5�
+ · · ·

• Changing oracle #1 barely changes the resulting state after 1
query. (with high probability)

18

The Hybrid Argument

First
query

|x1�|φ1�
+|x2�|φ2�
+|x3�|φ3�
+|x4�|φ4�
+|x5�|φ5�
+ · · ·

pass through oracle for f(v1)
(x)=�v1,x�−−−−−−−−−−−−−−−−−−−−−−→

Corrupted
answer

|x1�|ψ1�
+|x2�|ψ2�
+|x3�|ψ3�
+|x4�|ψ�

4�
+|x5�|ψ5�
+ · · ·

• Changing oracle #1 barely changes the resulting state after 1
query. (with high probability)

• The actual, corrupted states at the end are also close.

18

The Hybrid Argument

First
query

|x1�|φ1�
+|x2�|φ2�
+|x3�|φ3�
+|x4�|φ4�
+|x5�|φ5�
+ · · ·

pass through oracle for f(v1)
(x)=�v1,x�−−−−−−−−−−−−−−−−−−−−−−→

Corrupted
answer

|x1�|ψ1�
+|x2�|ψ2�
+|x3�|ψ3�
+|x4�|ψ�

4�
+|x5�|ψ5�
+ · · ·

• Changing oracle #1 barely changes the resulting state after 1
query. (with high probability)

• The actual, corrupted states at the end are also close.

• Actual, corrupted algorithm nearly the same.

18

The Hybrid Argument: Second query

Second
query
(corrupted)

|x1�|τ1�
+|x2�|τ2�
+|x3�|τ3�
+|x4�|τ4�
+|x5�|τ5�
+ · · ·

19

The Hybrid Argument: Second query

Second
query
(corrupted)

|x1�|τ1�
+|x2�|τ2�
+|x3�|τ3�
+|x4�|τ4�
+|x5�|τ5�
+ · · ·

pass through oracle for fV (x)−−−−−−−−−−−−−−−−→

19

The Hybrid Argument: Second query

Second
query
(corrupted)

|x1�|τ1�
+|x2�|τ2�
+|x3�|τ3�
+|x4�|τ4�
+|x5�|τ5�
+ · · ·

pass through oracle for fV (x)−−−−−−−−−−−−−−−−→

Second
answer
(corrupted)

|x1�|χ1�
+|x2�|χ2�
+|x3�|χ3�
+|x4�|χ4�
+|x5�|χ5�
+ · · ·

19

The Hybrid Argument: Second query

Second
query
(corrupted)

|x1�|τ1�
+|x2�|τ2�
+|x3�|τ3�
+|x4�|τ4�
+|x5�|τ5�
+ · · ·

pass through oracle for f(v1,v2)
(x)=max{�v1,x�,�v2,x�−γ}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Second
answer
(twice
corrupted)

|x1�|χ1�
+|x2�|χ�

2�
+|x3�|χ3�
+|x4�|χ4�
+|x5�|χ5�
+ · · ·

19

The Hybrid Argument: Second query

Second
query
(corrupted)

|x1�|τ1�
+|x2�|τ2�
+|x3�|τ3�
+|x4�|τ4�
+|x5�|τ5�
+ · · ·

pass through oracle for f(v1,v2)
(x)=max{�v1,x�,�v2,x�−γ}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Second
answer
(twice
corrupted)

|x1�|χ1�
+|x2�|χ�

2�
+|x3�|χ3�
+|x4�|χ4�
+|x5�|χ5�
+ · · ·

• Changing oracle #2 barely changes the resulting state after 2
queries. (with high probability)

19

The Hybrid Argument: After k − 1 queries

• Actual and k − 1-times corrupted algorithms are nearly the same.

20

The Hybrid Argument: After k − 1 queries

• Actual and k − 1-times corrupted algorithms are nearly the same.

• The k − 1-times corrupted state is independent of vk given
v1, . . . , vk−1.

20

The Hybrid Argument: After k − 1 queries

• Actual and k − 1-times corrupted algorithms are nearly the same.

• The k − 1-times corrupted state is independent of vk given
v1, . . . , vk−1.

• The k − 1-times corrupted algorithm fails.

20

The Hybrid Argument: After k − 1 queries

• Actual and k − 1-times corrupted algorithms are nearly the same.

• The k − 1-times corrupted state is independent of vk given
v1, . . . , vk−1.

• The k − 1-times corrupted algorithm fails.

20

The Hybrid Argument: After k − 1 queries

• Actual and k − 1-times corrupted algorithms are nearly the same.

• The k − 1-times corrupted state is independent of vk given
v1, . . . , vk−1.

• The k − 1-times corrupted algorithm fails.

Success probability of the actual algorithm is also small.

20

The Hybrid Argument: After k − 1 queries

• Actual and k − 1-times corrupted algorithms are nearly the same.

• The k − 1-times corrupted state is independent of vk given
v1, . . . , vk−1.

• The k − 1-times corrupted algorithm fails.

Success probability of the actual algorithm is also small.

Actual function used is slightly modified to account for queries outside B.

20

The Hybrid Argument: After k − 1 queries

• Actual and k − 1-times corrupted algorithms are nearly the same.

• The k − 1-times corrupted state is independent of vk given
v1, . . . , vk−1.

• The k − 1-times corrupted algorithm fails.

Success probability of the actual algorithm is also small.

Actual function used is slightly modified to account for queries outside B.

n can be as small as 1/�6 for the above argument.

20

The Hybrid Argument: After k − 1 queries

• Actual and k − 1-times corrupted algorithms are nearly the same.

• The k − 1-times corrupted state is independent of vk given
v1, . . . , vk−1.

• The k − 1-times corrupted algorithm fails.

Success probability of the actual algorithm is also small.

Actual function used is slightly modified to account for queries outside B.

n can be as small as 1/�6 for the above argument.

Modifications taken from Bubeck et al. can bring n down to 1/�4.

20

Accelerated Gradient Descent

When the function is guaranteed to not have a rapid change of slope,
the optimal algorithm is Accelerated Gradient Descent.

21

Accelerated Gradient Descent

When the function is guaranteed to not have a rapid change of slope,
the optimal algorithm is Accelerated Gradient Descent.

Accelerated Gradient Descent is also dimension-independent.

21

Accelerated Gradient Descent

When the function is guaranteed to not have a rapid change of slope,
the optimal algorithm is Accelerated Gradient Descent.

Accelerated Gradient Descent is also dimension-independent.

Quantum can’t do better here either.

21

Accelerated Gradient Descent

When the function is guaranteed to not have a rapid change of slope,
the optimal algorithm is Accelerated Gradient Descent.

Accelerated Gradient Descent is also dimension-independent.

Quantum can’t do better here either.

Similar proof to the one shown, but the function requires smoothing.

21

Open Problems

Quantum computers can’t speed up gradient descent in general.
Yet...

• What is the quantum complexity of convex optimization in small
dimensions?

22

Quantum computers can’t speed up gradient descent in general.
Yet...

• What is the quantum complexity of convex optimization in small
dimensions?

• What other classes of convex optimization problems get quantum
speedups?

22

Quantum computers can’t speed up gradient descent in general.
Yet...

• What is the quantum complexity of convex optimization in small
dimensions?

• What other classes of convex optimization problems get quantum
speedups?

• What is the quantum complexity of optimizing the function class

fV (x) = max{�v1, x�, �v2, x�, . . . , �vk , x�}?

22

	Gradient Descent
	First-Order Convex Optimization
	Lower Bounds
	Randomized Lower Bound

	Quantum Computing
	Quantum Lower Bound

	Open Problems

