No Quantum Speedup over Gradient Descent

Lower Bounds for Convex Optimization

Ankit Garg " Robin Kothari? Praneeth Netrapalli' Suhail Sherif '3

"Microsoft Research India
2Microsoft Quantum and Microsoft Research

3Vector Institute, Toronto

Gradient Descent

Gradient Descent

Gradient Descent

Compute the function at a point.

Gradient Descent

Compute the function at a point.
Find the gradient at that point.

Gradient Descent

Compute the function at a point.
Find the gradient at that point.
Take a step in the opposite direction.

Gradient Descent

Compute the function at a point.
Find the gradient at that point.

Take a step in the opposite direction.
Repeat.

Gradient Descent

Compute the function at a point.
Find the gradient at that point.

Take a step in the opposite direction.
Repeat.

Gradient Descent

Compute the function at a point.
Find the gradient at that point.

Take a step in the opposite direction.
Repeat.

Gradient Descent

Compute the function at a point.
Find the gradient at that point.

Take a step in the opposite direction.
Repeat.

Gradient Descent

Compute the function at a point.
Find the gradient at that point.

Take a step in the opposite direction.
Repeat.

Gradient Descent

Compute the function at a point.
Find the gradient at that point.

Take a step in the opposite direction.
Repeat.

Gradient Descent

Compute the function at a point.
Find the gradient at that point.

Take a step in the opposite direction.
Repeat.

Gradient Descent

Compute the function at a point.
Find the gradient at that point.

Take a step in the opposite direction.
Repeat.

Gradient Descent

Compute the function at a point.
Find the gradient at that point.

Take a step in the opposite direction.
Repeat.

Gradient Descent

Compute the function at a point.
Find the gradient at that point.

Take a step in the opposite direction.
Repeat.

» Magical performance in high dimensions.

Gradient Descent

Compute the function at a point.
Find the gradient at that point.

Take a step in the opposite direction.
Repeat.

» Magical performance in high dimensions.
* Very useful for finding optimal parameters.

Gradient Descent

Compute the function at a point.
Find the gradient at that point.

Take a step in the opposite direction.
Repeat.

» Magical performance in high dimensions.
* Very useful for finding optimal parameters.
» Finding gradients:

Gradient Descent

Compute the function at a point.
Find the gradient at that point.

Take a step in the opposite direction.
Repeat.

» Magical performance in high dimensions.
* Very useful for finding optimal parameters.
» Finding gradients:
* Hard: Requiresm many function evaluations.

Pz <avy Guoded =y, IMIIZL

|
Q\;cr\/ A, =) Get <7‘;,\2\7 | uL\.P_ \]_%
n dim

{\/iu' frT Quen o lew~rn V. 1

Gradient Descent

Compute the function at a point.
Find the gradient at that point.

Take a step in the opposite direction.
Repeat.

» Magical performance in high dimensions.
* Very useful for finding optimal parameters.
» Finding gradients:

* Hard: Requires]dimension many function evaluations.
« Easy: Cheap Gradient Principle [GW ‘08]
Compute f(x), Vf(x) in time linear in computing f(x).

Gradient Descent

Compute the function at a point.
Find the gradient at that point.

Take a step in the opposite direction.
Repeat.

» Magical performance in high dimensions.
* Very useful for finding optimal parameters.
» Finding gradients:

« Hard: Requiresdimension many function evaluations.
« Easy: Cheap Gradient Principle [GW ‘08]
Compute f(x), Vf(x) in time linear in computing f(x).

e Guarantees?

First-Order Convex
Optimization

The Task

Given: a convex region B, first-order oracle access to a convex
function f : R” — R.
On input x, oracle Oy returns f(x), Vf(x).

The Task

Given: a convex region B, first-order oracle access to a convex
function f : R” — R.

Find x* = arg min f(x).
xeB

The Task

Given: a convex region B, first-order oracle access to a convex
function f : R” — R.

Find x’ € Bs.t. f(x') < minf(x) +e.
xeB

The Task

Given: a convex region B, first-order oracle access to a convex
function f : R” — R.

Find x’ € B s.t. f(x') < minf(x) +e.
xeB

2.00
175
150
125
1.00
075
050
025

0
000 7

100, 100
075 X 075
050 050
0250,00_ 30 0.25,00_ ~0.56
023050, 75 975 0230505 75 g
21.00-1.00 21.00-1.0

The Task

Given: a convex region B, first-order oracle access to a convex
function f : R” — R.

Find x’ € B s.t. f(x') < minf(x) +e.
xeB

100
0750500 59
“<20.00_
025,50

20.75 1 0185

€ ,or"

The Task

Given: a convex region B, first-order oracle access to a convex
function f : R" — R.

Find x’ € B s.t. f(x') < min f(x) +e.
XEB

e-optimal for G-Lipschitz function in ball of radius R
=
¢/ GR-optimal for 1-Lipschitz function in ball of radius 1

The Task

Given: a convex region B, first-order oracle access to a convex
function f: R” — R.

Find x’ € Bs.t. f(x’) < minf(x) + €.
xeB

0
-100 -0.75 -0.50 -0.25 000 025 050 075 100

The Task

Given: a convex region B, first-order oracle access to a convex
function f : R” — R.

Find x’ € B s.t. f(x') < minf(x) +e.
xeB

-1.00 -0.75 —0.50 —025 000 025 050 075 100

The Task

Given: a convex region B, first-order oracle access to a convex
function f: R” — R.

Find x’ € Bs.t. f(x’) < minf(x) + e.
xeB

-100 -0.75 -050 -0.25 000 025 050 075 100

g e Vi(x) & f(x+v) > f(x)+ (v,g) forall v

Known Algorithms |

1-dimensional fn:

Known Algorithms |

1-dimensional fn:

00
-100 -075 -0.50 -0.25 000 025 050 075 100

Known Algorithms |

1-dimensional fn:

00
-100 -075 -0.50 -0.25 000 025 050 075 100

Known Algorithms |

1-dimensional fn:

00
-100 -075 -0.50 -0.25 000 025 050 075 100

Known Algorithms |

1-dimensional fn:

10 -

00
-100 -075 -0.50 -0.25 000 025 050 075 100

Known Algorithms |

1-dimensional fn:

10 L

00
-100 -075 -0.50 -0.25 000 025 050 075 100

Known Algorithms |

1-dimensional fn:

log(1/¢) steps.

Known Algorithms |

n-dimensional fn:

Known Algorithms |

n-dimensional fn:
(Center of Gravity Method)

Known Algorithms |

n-dimensional fn:
(Center of Gravity Method)

N Vol(B(1))
e (vw(B(e)))

= nlog(1/e) steps.

Known Algorithms Il

Center of Gravity Method

nlog(1/e) steps. Projected Subgradient Descent

e x*

Known Algorithms Il

Center of Gravity Method

nlog(1/e) steps. Projected Subgradient Descent

e x*

X oy NG

Known Algorithms Il

Center of Gravity Method

nlog(1/e) steps. Projected Subgradient Descent

o x*

X.\.X/:X_ngx

(—=9x, X* — x) > f(x) — f(x*).

Known Algorithms Il

Center of Gravity Method

nlog(1/e) steps. Projected Subgradient Descent

(=g, X* — x) > f(x) — f(x*).

Ix* = X'||2 < |Ix* = X||? + n? — 2n(f(x) — f(x")).

SA qre. T FRoFb) e, deer by €

. § l/\ ' Ya
i~ gL akpr, e 4

-'./ G e _OPf ")t

Known Algorithms Il

Center of Gravity Method Projected Subgradient Descent
nlog(1/€) steps. 1/€ steps.

Known Algorithms Il

Center of Gravity Method Projected Subgradient Descent
nlog(1/e) steps. 1/ steps.

Fix e
Dimension n —

Known Algorithms Il

Center of Gravity Method Projected Subgradient Descent
nlog(1/¢) steps. 1/¢® steps.
Fix ¢
Dimension n —
‘! 1462 1 464

Classical: Deterministic

Known Algorithms Il

Center of Gravity Method Projected Subgradient Descent
nlog(1/¢) steps. 1/¢® steps.
Fix ¢
Dimension n —
1 1/‘62 1 /164
’ [NY ‘83] ‘

Q(1/€2) queries
Classical: Deterministic

Known Algorithms Il

Center of Gravity Method Projected Subgradient Descent
nlog(1/¢) steps. 1/¢® steps.
Fix ¢
Dimension n —
‘! 1462 1 464

Classical: Randomized

Known Algorithms Il

Center of Gravity Method Projected Subgradient Descent
nlog(1/¢) steps. 1/¢® steps.
Fix ¢
Dimension n —
‘! 1462 1 /‘64

[BJLLS ‘19]
Q(1/€2) queries
Classical: Randomized

Known Algorithms Il

Center of Gravity Method Projected Subgradient Descent

nlog(1/e) steps. 1/ steps.
Fix e

Dimension n —
1 1/‘62 1/‘64
N [BJLLS ‘19

Q(1/€2) queries
Classical: Randomized

For any € > 0, there is a family of 1-Lipschitz functions {f : R" — R}
with n = ©(1/€2) such that any randomized algorithm solving
first-order convex optimization on these requires Q(1/¢?) queries.

Lower Bounds

Theme for Lower Bounds
 Find functions that encode information.
* e-minimizing f = Learning the encoded information.

Theme for Lower Bounds
 Find functions that encode information.
* e-minimizing f = Learning the encoded information.

« Each query should access the information in a controlled
manner.

Lower Bounds

Randomized Lower Bound

The Base Function

f:R" =R

f(x) = max{x1, X2, ..., Xn}.

The Base Function

f:R" =R

f(x) = max{x1, X2, ..., Xn}.

. _ _17
Minimum = T

The Base Function

f:R" R
f(x) = max{x1, X2, ..., Xn}.
i 1 _(_ 1 1
Minimum = — 1 at x = (_W""’_%)'

The Base Function

f:R" R
f(x) = max{x1, X2, ..., Xn}.
i 1 _(_ 1 1
Minimum = — 1 at x = (_W""’_%)'

If x; is @ maximum, then g; is a subgradient.

Function Class

ze{+1,-1}"

fz(x) = max{z1 X1, ZoX2, . . ., ZnXn}.

Function Class

ze{+1,-1}"
fz(x) = max{z1 X1, ZoX2, . . ., ZnXn}.

Minimum = — 7

Function Class

ze{+1,-1}"
f(x) = max{z1 X1, ZoXo, . . ., ZnXn}.
Minimum = — -, at x = (—%,...,—%),

Function Class

ze{+1,-1}"
fz(x) = max{z1 X1, ZoX2, . . ., ZnXn}.
ini —(_z _z
Minimum = — f,atx (ﬁ, ﬁ).

-l
Sete = 7 X g E,OP’(2 4 (L J—T_‘

Function Class

ze{+1,-1}"
fz(x) = max{z1 X1, ZoXo, ..., ZnXn}.
Minimum = —\1—%, at x = (—%,...,—%).
Sete = \%1'

The behaviour of f
Z1 Z2 Z3 Z4 Zn

Function Class

ze{+1,-1}"
fz(x) = max{z1 X1, ZoX2, . . ., ZnXn}.
Minimum = —ﬁ, atx = (—%,...,—%).
Sete = Tgn'

The behaviour of f
Zq V) Z3 Z4 Zn

0<1:_=_D_:,_.:>

Xq Xo X3 X4 Xn

Function Class

ze{+1,-1}"

f(x) = max{ZiX1, Zo%o. ... ZnXa).
Minimum = —ﬁ, atx = (—%,...,—%),
Sete = Tgn'

The behaviour of f
21 22 Z3 Z4 Zn
+

0

X1 Xo X3 X4 bXA

Function Class

ze{+1,-1}"

f(x) = max{ZiX1, Zo%o. ... ZnXa).
Minimum = —ﬁ, atx = (—%,...,—%),
Sete = Tgn'

The behaviour of f
21 22 Z3 Z4 Zn

+ +

0

X1 Xo X3 X4 bXA

Function Class

ze{+1,-1}"

fz(X) = max{z1 X1,22X2, ..., Zan},

Minimum = —ﬁ, at x = <7%7,_.,,%)_
_ .9
The behaviour of f
Zy Z> Z3 Z4 Zn
+ +

L I A

X4 X2 X3 X4 b

~ 2 bits of z revealed per query.

Function Class

ze{+1,-1}"

f(x) = max{ZiX1, Zo%o. ... ZnXa).
Minimum = —ﬁ, atx = (—%,...,—%),
Sete = Tgn'

The behaviour of f
21 22 Z3 Z4 Zn

+ +

0 — 7=

X1 Xo X3 X4 bXA

Function Class

ze{+1,-1}"

f(x) = max{ZiX1, Zo%o. ... ZnXa).
Minimum = —ﬁ, atx = (—%,...,—%),
Sete = Tgn'

The behaviour of f
21 22 Z3 Z4 Zn
aty = 4 AL _

Function Class

ze{+1,-1}"
f(x) = max{zi X1, ZoXz, . . ., ZnXn}.
Minimum = — -, at x = (7%7.”’7%)_
Sete = \%'

The behaviour of f
Z4 Z> Z3 Z4 Z

Finding e-optimal point = learning z. 1 uu"*/-\\
[\J eed _(L(,"\ q/u,_r."\‘A _(L(GL) ﬂ) .

Function Class

ze{+1,-1}"
f(x) = max{zi X1, ZoXz, . . ., ZnXn}.
Minimum = — -, at x = (7%7.”’7%)_
Sete = \%'

The behaviour of f
Z4 Z> Z3 Z4 Zn

Xy Xe Xz X2 Xp Requires Q(n) = Q(1/€?)
queries.

Quantum Computing

Quantum Reality

double-
slit screen

Electrons

LY — -
electron
beam gun

interference
pattern

Quantum Reality

double-

slit screen
Electrons
[VNS -
electron
beam gun
interference

pattern

Particles can be in a superposition of states.

Quantum Reality

double-
slit screen

Electrons

[-
electron
beam gun

interference
pattern

Particles can be in a superposition of states.

a|Left Slit) + B|Right Slit), with a2 + |82 = 1.

Quantum Reality

double-
slit screen

Electrons

T s -

electron
beam gun

interference
pattern

Particles can be in a superposition of states.
alLeft Slit) + B|Right Slit), with |af? 4 |82 = 1.

Each component of the superposition “evolves” as it would have
without the superposition.

Quantum Reality

double-
slit

screen

Electrons

[V e -

electron
beam gun

interference
pattern

Particles can be in a superposition of states.
alLeft Slit) + B|Right Slit), with |af? 4 |82 = 1.

Each component of the superposition “evolves” as it would have
without the superposition.

|Left Slit) — |Left Spread) and |Right Slit) — |Right Spread).

Quantum Reality

double-
slit screen

Electrons

T s -

electron
beam gun

interference
pattern

Particles can be in a superposition of states.

a|Left Slit) + |Right Slit), with |a|? + [8> = 1.

Each component of the superposition “evolves” as it would have
without the superposition.

|Left Slit) — |Left Spread) and |Right Slit) — |Right Spread).

The actual state is the sum of the states of each component:
a|Left Spread) + S|Right Spread). 8

Quantum Computer

* A classical computer has a memory that is in one of
omemory size in bits states.

Quantum Computer

* A classical computer has a memory that is in one of
omemory size in bits states.

* A quantum computer’s memory can be in a superposition of
these ‘base’ states.

Quantum Computer

* A classical computer has a memory that is in one of
omemory size in bits states.

* A quantum computer’s memory can be in a superposition of
these ‘base’ states.

|&) MEMoRY = Z am|M) memory With Z lam[® = 1.

me {0,1}memory size

Quantum Computer

* A classical computer has a memory that is in one of
omemory size in bits states.

* A quantum computer’s memory can be in a superposition of
these ‘base’ states.

ety = Z am| M) memory With Z lam|? = 1.
me{0,1}memory size

omemory size

|¢) memory, Where ¢ € C and ||¢[l2 = 1.

Quantum Computer

* A classical computer has a memory that is in one of
omemory size in bits states.

* A quantum computer’s memory can be in a superposition of
these ‘base’ states.

|&) MEMoRY = Z am|M) memory With Z lam[® = 1.

me {0,1}memory size

omemory size

|¢) memory, Where ¢ € C and ||¢[l2 = 1.

» Permitted operations are those that preserve norms.

Quantum Computer

* A classical computer has a memory that is in one of
omemory size in bits states.

* A quantum computer’s memory can be in a superposition of
these ‘base’ states.

|&) MEMoRY = Z am|M) memory With Z lam[® = 1.

me {0,1}memory size

szemory size

|&) Memory , Where ¢ € and [|¢]l2 = 1.

» Permitted operations are those that preserve norms.
+ Can apply a unitary M to the state |¢) to get the new state |[M¢).

Quantum Computer

* A classical computer has a memory that is in one of
omemory size in bits states.

* A quantum computer’s memory can be in a superposition of
these ‘base’ states.

|&) MEMoRY = Z am|M) memory With Z lam[® = 1.

me {0,1}memory size

szemory size

|#) memory » Where ¢ € and [|g2 = 1.

» Permitted operations are those that preserve norms.

+ Can apply a unitary M to the state |¢) to get the new state |[M¢).
» Every base state gets mapped to a valid superposition.

[~ — TS

Quantum Computer

* A classical computer has a memory that is in one of
omemory size in bits states.

* A quantum computer’s memory can be in a superposition of
these ‘base’ states.

|&) MEMoRY = Z am|M) memory With Z lam[® = 1.

me {0,1}memory size

szemory size

|#) memory » Where ¢ € and [|g2 = 1.
» Permitted operations are those that preserve norms.

+ Can apply a unitary M to the state |¢) to get the new state |[M¢).
» Every base state gets mapped to a valid superposition.
» Each of these mappings are orthonormal.
\&n D

IS{”‘L>

Quantum Computer

* A classical computer has a memory that is in one of
omemory size in bits states.

* A quantum computer’s memory can be in a superposition of
these ‘base’ states.

|&) MEMoRY = Z am|M) memory With Z lam[® = 1.

me {0,1}memory size

szemory size

|#) memory » Where ¢ € and [|g2 = 1.
» Permitted operations are those that preserve norms.

+ Can apply a unitary M to the state |¢) to get the new state |[M¢).
» Every base state gets mapped to a valid superposition.
» Each of these mappings are orthonormal.

 Just changing the basis. 56) — <w>

Quantum Tricks

» Can take advantage of Fourier transforms.
» The vectors

1 1 1 1

1 w W W
S , L ; i w? . i w® oa
wWwil.l'w| W L R

1. w/\;—1 Cuz(l;l—1) w3(/;l—1)

are all orthonormal where w = €27/N is the principal Nth root of
unity.

Computing Gradients

f:R2 SR

Computing Gradients

f:R® SR

Example state: (Z ai|Xi.Vi>/NPUT> 10) outPuT|0) OTHER_VARS
i

Computing Gradients

f:R? =R, f(x,y) = ax + by

1 1
Initial state: | — > |x;)wpur, — > ¥ eu, | 10)outPuT
(W = VN
)

JEIN]
. . e . = v + G0
5,\] 1 l -
| - - . sy ¢ (D
SRR
-Jl o . . S

—t— — X "
o, 21 A2 - -

Computing Gradients

f:R? 5 R, f(x,y) = ax + by

. 1 1
Initial state: <\/N > Xf)/NPUp) (\W > Yj>INPUT2) 10) outPUT

i€[N] JEIN]

’
Query: DD iveur, 1) neut, | (X0, ¥i)) outpur
i€[N]j€EN]

Computing Gradients

f:R2 5 R, f(x,y) = ax + by

Initial state: (\F > Ix) INPUT1> (f >y INPUTg) |0) outPuT

i€[N] JEIN]

’
Query: N > Xdweur, |}’/)/NPUT2V(X/7Y/)>OUTPUT

i€[N]jE[N]
f(x, yI)N
Add phases: — Z Z w3 X iveuT 1)) inpuT, [F(Xi, Vi) outPuT
’G[N]IE[N]

dirthon

I 1S SI"L(/P ‘A ,’:_U,_ v.'..‘LL,
O
—-j W) I’M‘j,B + L l’x‘ﬁlj|> 11

Computing Gradients

f:R? 5 R, f(x,y) = ax + by

" 1
Initial state: Z |xi) INPUT1> <W > yj>INPUT2) 10) outPuT
=T jeM

]
Query: N D> Xidiveur,) neut, | F(Xi, ¥i)) outeur

i€[N]j€[N]
f(x, y])N
Add phases: — Z dw [xi) vpuT, 1Y;) npuT, | F(Xis ¥i)) outeur
'E[N]IE[N]

Query again (to undo): Z Z o IX/ npuT, 1Y) inPuT, 10) ouTPUT
/E[N]IG[N]

Nebs g1 Ve Lxadled m b1 s 1075 byt
13 el uni Fary. See shde IS for why

query vndodts .

O,\l‘/ 'Ml'ﬂ,>/7£(x“u")> Sl)uv)rj er %‘h IYL'I’I>J0>

Computing Gradients

f:R? 5 R, f(x,y) = ax + by

" 1
Initial state: <\F > Ix) INPUT1> (W > Yj>INPUT2) 10) outPUT

i€[N] JEIN]

’
Query: — > > [X)weur, 1Y) neur, | F(Xi, ¥))) ourpur
i€[N]j€[N]
f(x, y)N
Add phases: — Z dow [Xi) inpuT, 1Y;) npuT, [F(Xi5 Vi) outPUT
/€[N]/€[N]

Query again (to undo): Z Z o |X/ npUT; 1Y) INPUT, 0) ouTPUT
’E[N]IG[N]

Equals:

2 1 ail i 1 biN ,
w(@Ei+on) i (W > wTN|X1 + ’/N>/NPUT1) (m D> ws |y +//N>/NPUT2> 10) outPuT
15:% jey
{o,b-p-1 } fo1,..~1Y
11

Computing Gradients

f:R? 5 R, f(x,y) = ax + by

N2 1 aiN . 1 bN)
w(@a+br) (W YW x + ’/N>/NPUT1) (W > ws |y +//N>/NPUT2> 10) outPUT
&) jepg
[n,...,w 1) {-,__,, M0

Computing Gradients

\

o AR loasis
A 1aVh \ —
JN| Saawin) Sy

w

f:R2 5 R, f(x,y) = ax + by

N2 aN .
w(ax1+b}’1) 3 Z w3 |xq+ ’/N>/NPUT1

1 biN ,
TN > ws |y +J/Nyeur, | 10)outpur
iEPGLO -\

1
\/N jemlo,._ﬂ—ﬁ

. N2 1 biN .
Change basis: w115 |aN/3) pryase, (W dwsn +//N>/NPUT2) 10) ourPuT
JEN]

Computing Gradients

F:)Kh’hlr{ Z q/u(rfto

f:R? 5 R, f(x,y) = ax + by

(ax1+by1)N—2 (1 Z aiN . 1 bN .

w g [== w3 X +i/Nywpur, | | —= D w3 lyr +i/Nyweur, | 10)ourrur

= =
1

2
Change basis: w'(x1’Y1)NT|aN/3>PHASE1 <\W

biN ,
dows iy +//N>/NPUT2> 10) ourPUT
JEIN]

N2
For coord 2: w/*0Y1)5" |aN/3) pase, |N/3) priase, 10y ourpur
I o

\ I

Can quantum “do gradient descent” faster?

+ Can find gradient with 2 queries to function oracle. [Jordan ‘05]

Can quantum “do gradient descent” faster?

+ Can find gradient with 2 queries to function oracle. [Jordan ‘05]

* Hope: Use less than k queries to get the result of k gradient
descent steps?

Can quantum “do gradient descent” faster?

+ Can find gradient with 2 queries to function oracle. [Jordan ‘05]

* Hope: Use less than k queries to get the result of k gradient
descent steps?
» Would join the ranks of unstructured search, period finding, vector
reconstruction etc.

Can quantum “do gradient descent” faster?

+ Can find gradient with 2 queries to function oracle. [Jordan ‘05]

* Hope: Use less than k queries to get the result of k gradient
descent steps?
» Would join the ranks of unstructured search, period finding, vector
reconstruction etc.

Can quantum “do gradient descent” faster?

+ Can find gradient with 2 queries to function oracle. [Jordan ‘05]

* Hope: Use less than k queries to get the result of k gradient
descent steps?

» Would join the ranks of unstructured search, period finding, vector
reconstruction etc.

For negative result, need to reformulate our question.

Can quantum “do gradient descent” faster?

+ Can find gradient with 2 queries to function oracle. [Jordan ‘05]

* Hope: Use less than k queries to get the result of k gradient
descent steps?

» Would join the ranks of unstructured search, period finding, vector
reconstruction etc.

For negative result, need to reformulate our question.
Use First-Order Convex Optimization as a proxy for Gradient Descent.

Quantum Speedup

ze{+1,-1}"
fz(x) = max{z1 X1, ZoXo, ..., ZnXn}.
Minimum = —\1—%, at x = (—%,...,—%).
Sete = 'Tgn.

Quantum Speedup

ze{+1,-1}"
fz(x) = max{z1 X1, ZoXo, ..., ZnXn}.
Minimum = —\1—%, at x = (—%,...,—%).
Sete = 'Tgn.

A quantum algorithm can e-optimize the above function class in
O(v/n) queries.

Quantum Speedup

ze{+1,-1}"
fz(x) = max{z1 X1, ZoXo, ..., ZnXn}.
Minimum = —\1—%, at x = (—%,...,—%).
Sete = 'Tgn.

A quantum algorithm can e-optimize the above function class in

O(v/n) queries.
For any S C [n], can find x such that

B(x)=1iff \/ z =+
i€eS

Quantum Speedup

ze{+1,-1}"
fz(x) = max{z1 X1, ZoXo, ..., ZnXn}.
Minimum = —\1—%, at x = (—%,...,—%).
Sete = 'Tgn.

A quantum algorithm can e-optimize the above function class in

O(v/n) queries.
For any S C [n], can find x such that

B(x)=1iff \/ z =+
i€eS

Can then use Belovs’ algorithm to learn z from such OR queries.

Known Algorithms Il

Center of Gravity Method Projected Subgradient Descent
nlog(1/€) steps. 1/€2 steps.
Fix e
Dimension n —
1 1462 1 464

Quantum

Known Algorithms Il

Center of Gravity Method Projected Subgradient Descent
nlog(1/€) steps. 1/€2 steps.
Fix e
Dimension n —
1 1462 1 /164
’ [CCLW ‘18]

Q(1/¢) queries
Quantum

Known Algorithms Il

Center of Gravity Method
nlog(1/e) steps.

lo L‘/&\\ Fix e
(e (\F\ § Dimension n —

1MH54
, 1CCHTTE " (L) e
_n.(://b & Q(1/¢) queries C") [

Quantum

Projected Subgradient Descent

1/€? steps.

Theorem (Garg-Kothari-Netrapalli-S. “20)

For any ¢ > 0, there is a family of 1-Lipschitz functions {f : R" — R}

with n = ©(1/€*) such that any quantum algorithm solving first-order
convex optimization on these requires Q(1/€?) queries.

Quantum Computing

Quantum Lower Bound

The Query Model

We are provided with an oracle Oy to access the unknown function f.

The Query Model

We are provided with an oracle Oy to access the unknown function f.

* Input register INPUT with orthogonal states {|x) }xern

The Query Model

We are provided with an oracle Oy to access the unknown function f.

* Input register INPUT with orthogonal states {|x) }xern
(rather for a discretization of R”)

The Query Model

We are provided with an oracle Oy to access the unknown function f.

* Input register INPUT with orthogonal states {|x) }xern
(rather for a discretization of R”)
 Oracle O ‘answers’ function value and subgradient queries.

The Query Model

We are provided with an oracle Oy to access the unknown function f.

* Input register INPUT with orthogonal states {|x) }xern
(rather for a discretization of R”)

 Oracle O ‘answers’ function value and subgradient queries.
Usually

Or|x) nput|b) outrut = |X)nput|b @ “f(X), VE(X)") outPUT

The Query Model

We are provided with an oracle Oy to access the unknown function f.

* Input register INPUT with orthogonal states {|x) }xern
(rather for a discretization of R”)

 Oracle O ‘answers’ function value and subgradient queries.
Usually

Or|x) nput|b) outrut = |X)nput|b @ “f(X), VE(X)") outPUT

» For f,f' s.t. f(x) = f'(x) and Vf(x) = Vf'(x):

Os|x) nput|d) REST = OF |X) INPUT |®) REST

The Base Function

“Complexity of Highly Parallel Non-Smooth Convex Optimization”
- Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, Aaron Sidford

The Base Function

f:R" >R

f(X):maX{X17X2_77X3_2’Ya"'axk_(k_1)7}'

~ is small.

The Base Function

f:R" >R

f(X) = maX{X17X2 -7, X3 _275"%)(/(- (k_ 1)7}
~ is small.

Minimumz—ﬁ,atxm (—if,...,—— 0,0,---).

The Function Class

V =(wv1,vo,..., V) is a set of k orthonormal vectors in R".

The Function Class

V =(wv1,vo,..., V) is a set of k orthonormal vectors in R".

fu(x) = max{(vq, X}, (Va, X) — v, (V3, X) — 27, ..., (Vk,X) — (k — 1)7v}.

The Function Class

V =(wv1,vo,..., V) is a set of k orthonormal vectors in R".

fu(x) = max{(vq, X}, (Va, X) — v, (V3, X) — 27, ..., (Vk,X) — (k — 1)7v}.

A L ~_M V2 Y
Minimum =~ ﬁ,atx N il N

The Function Class

V =(wv1,vo,..., V) is a set of k orthonormal vectors in R".

fu(x) = max{(vq, X}, (Va, X) — v, (V3, X) — 27, ..., (Vk,X) — (k — 1)7v}.

A L ~_M V2 Y
Minimum =~ ﬁ,atx N il N

Sete= 5.y 1) coopt D)L
Yic

S

The Function Class

V =(wv1,vs,..., V) is a set of k orthonormal vectors in R".

fu(x) = max{(vy, x), (va, X) — 7, (Va, X) — 27,...,{Vk,X) — (k — 1)v}.

V2 Mk
Todtxm - - % v

Sete= W

Minimum ~ —

The behaviour of f

Let x € R" with ||x|| = 1.
Let v4,..., v, be orthonormal vectors sampled uniformly at random.

The Function Class

V = (v1, vo,..., V) is a set of k orthonormal vectors in R".

fu(x) = max{{vy, X), (Va, X) — v, (v, X) — 27, ..., (Vk, X) — (k — 1)7}.

Ao g il ~_M V2 Y
Minimum =~ \/E,atx iy e

— 43

The behaviour of f

Let x € R" with ||x|| = 1.
Let vq, ..., v, be orthonormal vectors sampled uniformly at random.

0 —

(v, x) (2, X) (V3, X) (V4, X) (Vk, X)

The Function Class

V = (v1, vo,..., V) is a set of k orthonormal vectors in R".

fu(x) = max{{vy, X), (Va, X) — v, (v, X) — 27, ..., (Vk, X) — (k — 1)7}.

Ao g il ~_M V2 Y
Minimum =~ \/E,atx iy e

— 43

The behaviour of f

Let x € R" with ||x|| = 1.
Let vq, ..., v, be orthonormal vectors sampled uniformly at random.

0 — 171 ——T1 71— l/vn
—1/vn

The Function Class

V = (v1, vo,..., V) is a set of k orthonormal vectors in R".

fu(x) = max{{vy, X), (Va, X) — v, (v, X) — 27, ..., (Vk, X) — (k — 1)7}.

Ao g il ~_M V2 Y
Minimum =~ \/E,atx iy e

— 43

The behaviour of f

Let x € R" with ||x|| = 1.
Let vq, ..., v, be orthonormal vectors sampled uniformly at random.
Y

0 — 171 ——T1 71— l/vn
—1/vn

-

The Function Class

V = (v1, vo,..., V) is a set of k orthonormal vectors in R".

fv(x) = max{(v1, X), (v2, X) —7,(v3,X) —27,..., (Vk, X) — (k = 1)7}.

A =~ L ~_M V2 Y
Minimum =~ ﬁ,atx N iy N

— 9

The behaviour of f
Let x € R" with ||x|| = 1.

Let v4,..., v, be orthonormal vectors sampled uniformly at random.
Y
0 — 1/vn
-1/v/n
-
N
V']_A" [\/\Q/,*) X

N Whp, first query reveals v;.
Vo throughrandom from n — 1 dimensional space. 17

The Function Class

V = (v1, vo,..., V) is a set of k orthonormal vectors in R".

fu(x) = max{{vy, X), (Va, X) — v, (v, X) — 27, ..., (Vk, X) — (k — 1)7}.

Ao g il ~_M V2 Y
Minimum =~ \/E,atx iy e

— 43

The behaviour of f

Let x € R" with ||x|| = 1.

Let vq, ..., v, be orthonormal vectors sampled uniformly at random.
Y
[| I | _1/ﬁ
-
L] L=1/Vkl

The Function Class

V = (v1, vo,..., V) is a set of k orthonormal vectors in R".

fu(x) = max{{vy, X), (Va, X) — v, (v, X) — 27, ..., (Vk, X) — (k — 1)7}.

Ao g il ~_M V2 Y
Minimum =~ \/E,atx iy e

— 43

The behaviour of f

Let x € R" with ||x|| = 1.
Let vq, ..., v, be orthonormal vectors sampled uniformly at random.
Y
0 = S — 1/v/n
~1/v

-

The Function Class

V = (v1, vo,..., V) is a set of k orthonormal vectors in R".

fu(x) = max{{vy, X), (Va, X) — v, (v, X) — 27, ..., (Vk, X) — (k — 1)7}.

Ao g il ~_M V2 Y
Minimum =~ \/E,atx iy e

— 43

The behaviour of f

Let x € R" with ||x|| = 1.

Let vq, ..., v, be orthonormal vectors sampled uniformly at random.
Y
1/v/n
° =—T——1/vh

-

The Function Class

VZ(V1,V2,...

fu(x) = max{(vq, X}, (Va, X) — 7, (v3,X) — 2,..

Minimum ~ —

\/E’

1

at x ~ —

vk

V4

vk
Sete= -2,

Vo

, Vi) is a set of k orthonormal vectors in R".

- (Vi X) — (kK= 1)}

Vk

The behaviour of f
Let x € R" with ||x|| = 1.

Let v4,..., v, be orthonormal vectors sampled uniformly at random.
Y
0 1/vn
———1/vn
-

vk still nearly at random from n — k dimensional space.

Can’t output e-optimal point.

The Hybrid Argument

First
query

[X1)[1)
+|X2)|p2)
+|x3)|#3)
+1xa)|pa)
+x5)|¢s)

The Hybrid Argument

First
query

[X1)[1)
+|X2)|p2)
+|x3)|#3)

) ¢a)
) ¢s)

pass through oracle for fy/(x)

+[Xa) |4
+|xs)|#s5

The Hybrid Argument

S First
query answer
1)) AR
+xe)lve)
i:iizi e e
+10) 64) TR
+1%)|65) el
s

The Hybrid Argument

First Corrupted
query answer
|X1)|#1) X1)[41)
+|X2>‘¢2> pass through oracle for f(V1)(x)=(v1,x> +|X2>|1/)2>
+[X3)|¢3) +[x3)[3)
+1Xa)|ba) whep F) =< +|Xa)[¢4)
+x5)|¢s) +|x5)|1s)

The Hybrid Argument

First Corrupted
query answer
X1)|¢1) 1X1)[41)
+|X2>‘¢2> pass through oracle for f(V1)(x)=(v1,x> +|X2>|1/)2>
+|x3)|¢3) +[X3)[03)
+|xa)|B4) +|Xa)|ba)
+[Xs5)|#s) +[Xs) |15)

» Changing oracle #1 barely changes the resulting state after 1
query. (with high probability)

The Hybrid Argument

First Corrupted
query answer
X1)|¢1) 1X1)[41)
+|X2>‘¢2> pass through oracle for f(V1)(x)=(v1,x> +|X2>|1/)2>
+|x3)|¢3) +[X3)[03)
+|xa)|B4) +|Xa)|ba)
+[Xs5)|#s) +[Xs) |15)

» Changing oracle #1 barely changes the resulting state after 1
query. (with high probability)
» The actual, corrupted states at the end are also close. (Rc“‘\"
(T’dg-l\\—UM M\Y
‘}555 unit-an es (u\l“{d'\
prusent rx'\s'\"\l\u-!]) 18

The Hybrid Argument

First Corrupted
query answer
X1)|¢1) 1X1)[41)
+|X2>‘¢2> pass through oracle for f(V1)(x)=(v1,x> +|X2>|1/)2>
+|x3)|¢3) +[X3)[03)
+|xa)|B4) +|Xa)|ba)
+[Xs5)|#s) +[Xs) |15)

» Changing oracle #1 barely changes the resulting state after 1
query. (with high probability)

» The actual, corrupted states at the end are also close.

* Actual, corrupted algorithm nearly the same.

The Hybrid Argument: Second query

Second

query
(corrupted)

The Hybrid Argument: Second query

Second

query
(corrupted)

pass through oracle for fy(x)

The Hybrid Argument: Second query

Second Second
query answer
(corrupted) (corrupted)
x1)|71) [x1)|x1)
+|x2)|72) pass through oracle for f,(x) +1x2)[x2)
+[X3)|73) +[x3)]x3)
+|Xa)|74) +[Xa)]xa)
+|x5)|75) +1x5) | x5)

The Hybrid Argument: Second query

Second
Second
query answer
twice
(corrupted) (
corrupted)
[X1)|71)
+|X >|7_ > pass through oracle for f(v17V2)(ﬁ:max{<V1,X),{Vg,X)*’y} |X1>‘X1>
2 2
i) +1X2) X2)
3)|73
el +1X3)x3)
4)|T4
s} +(Xa) [xa)
5)|T5
N +[Xs5)|xs)

The Hybrid Argument: Second query

Second
Second
uery answer
?corru ted) (twice
P corrupted)
[X1)|71)
+|X >|7_ > pass through oracle for fy, v,)(X)=max{(vi,x),(v2,x)—~7} |X1>‘X1>
2 2
)7} +|X2) [x2)
X3)|73
P - +1x3) xa)
X4)|T4
+1x5)7) g oy e %) x4)
Xs)| T Lo
e e M +(Xs)|x5)
foog 5'(- Ju e Lort
[o a + -
\l\- 03

» Changing oracle #2 barely changes the resulting state after 2
queries. (with high probability)

The Hybrid Argument: After kK — 1 queries

» Actual and k — 1-times corrupted algorithms are nearly the same.

20

The Hybrid Argument: After kK — 1 queries

» Actual and k — 1-times corrupted algorithms are nearly the same.

» The k — 1-times corrupted state is independent of v, given
Vi, oo, V1.

20

The Hybrid Argument: After kK — 1 queries

» Actual and k — 1-times corrupted algorithms are nearly the same.

» The k — 1-times corrupted state is independent of v, given
Vi, oo, V1.

* The k — 1-times corrupted algorithm fails.

20

The Hybrid Argument: After kK — 1 queries

» Actual and k — 1-times corrupted algorithms are nearly the same.

» The k — 1-times corrupted state is independent of v, given
Vi, oo, V1.

* The k — 1-times corrupted algorithm fails.

20

The Hybrid Argument: After kK — 1 queries

» Actual and k — 1-times corrupted algorithms are nearly the same.

» The k — 1-times corrupted state is independent of v, given
Vi, oo, V1.

* The k — 1-times corrupted algorithm fails.

Success probability of the actual algorithm is also small.

20

The Hybrid Argument: After kK — 1 queries

» Actual and k — 1-times corrupted algorithms are nearly the same.

» The k — 1-times corrupted state is independent of v, given
Vi, oo, V1.

* The k — 1-times corrupted algorithm fails.

Success probability of the actual algorithm is also small.

Actual function used is slightly modified to account for queries outside B.

20

The Hybrid Argument: After kK — 1 queries

» Actual and k — 1-times corrupted algorithms are nearly the same.

» The k — 1-times corrupted state is independent of v, given
Vi, oo, V1.

* The k — 1-times corrupted algorithm fails.

Success probability of the actual algorithm is also small.
Actual function used is slightly modified to account for queries outside B.

ncan be as small as 1/¢® for the above argument.

20

The Hybrid Argument: After kK — 1 queries

» Actual and k — 1-times corrupted algorithms are nearly the same.

» The k — 1-times corrupted state is independent of v, given
Vi, oo, V1.

» The k — 1-times corrupted algorithm fails.
Success probability of the actual algorithm is also small.
Actual function used is slightly modified to account for queries outside B.
ncan be as small as 1/¢® for the above argument.

Modifications taken from Bubeck et al. can bring n down to 1/¢*.

20

Accelerated Gradient Descent

When the function is guaranteed to not have a rapid change of slope,
the optimal algorithm is Accelerated Gradient Descent. ’/d/e "”I”

21

Accelerated Gradient Descent

When the function is guaranteed to not have a rapid change of slope,
the optimal algorithm is Accelerated Gradient Descent.

Accelerated Gradient Descent is also dimension-independent.

21

Accelerated Gradient Descent

When the function is guaranteed to not have a rapid change of slope,
the optimal algorithm is Accelerated Gradient Descent.

Accelerated Gradient Descent is also dimension-independent.

Quantum can’t do better here either.

21

Accelerated Gradient Descent

When the function is guaranteed to not have a rapid change of slope,
the optimal algorithm is Accelerated Gradient Descent.

Accelerated Gradient Descent is also dimension-independent.
Quantum can’t do better here either.

Similar proof to the one shown, but the function requires smoothing.

21

Open Problems

Quantum computers can’t speed up gradient descent in general.
Yet...

» What is the quantum complexity of convex optimization in small
dimensions?

22

Quantum computers can’t speed up gradient descent in general.
Yet...

» What is the quantum complexity of convex optimization in small
dimensions?

» What other classes of convex optimization problems get quantum
speedups?

22

Quantum computers can’t speed up gradient descent in general.

Yet...
» What is the quantum complexity of convex optimization in small
dimensions? n < %.‘
» What other classes of convex optimization problems get quantum
speedups?

» What is the quantum complexity of optimizing the function class

fv(x) = max{{vy, x), (vo, X), ..., (v, X)}?

22

	Gradient Descent
	First-Order Convex Optimization
	Lower Bounds
	Randomized Lower Bound

	Quantum Computing
	Quantum Lower Bound

	Open Problems

