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The Gradient Descent method [Cauchy ‘47]

• Compute the function at a point.

• Find the gradient at that point.

• Take a step in the opposite direction.

• Repeat.

• Magical performance in high dimensions.

• Very useful for finding optimal parameters.

• Finding gradients:
• Hard: Requires dimension many function evaluations.
• Easy: Cheap Gradient Principle [GW ‘08]

Compute f (x),∇f (x) in time linear in computing f (x).

• Guarantees?
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First-Order Convex
Optimization



The Task

Given: a convex region B, first-order oracle access to a convex
function f : Rn → R.

On input x , oracle Of returns f (x),∇f (x).
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Given: a convex region B, first-order oracle access to a convex
function f : Rn → R.

Find x � ∈ B s.t. f (x �) ≤ min
x∈B

f (x) + �.

�-optimal for G-Lipschitz function in ball of radius R
⇐⇒

�/GR-optimal for 1-Lipschitz function in ball of radius 1

2



The Task

Given: a convex region B, first-order oracle access to a convex
function f : Rn → R.

Find x � ∈ B s.t. f (x �) ≤ min
x∈B

f (x) + �.

2



The Task

Given: a convex region B, first-order oracle access to a convex
function f : Rn → R.

Find x � ∈ B s.t. f (x �) ≤ min
x∈B

f (x) + �.

2



The Task

Given: a convex region B, first-order oracle access to a convex
function f : Rn → R.

Find x � ∈ B s.t. f (x �) ≤ min
x∈B

f (x) + �.

g ∈ ∇f (x) ⇔ f (x + v) ≥ f (x) + �v , g� for all v
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n-dimensional fn:
(Center of Gravity Method)

≈ log

�
Vol(B(1))
Vol(B(�))

�

= n log(1/�) steps.
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Center of Gravity Method

n log(1/�) steps. Projected Subgradient Descent

x

x∗

x � = x − ηgx

�−gx , x∗ − x� ≥ f (x)− f (x∗).

�x∗ − x ��2 ≤ �x∗ − x�2 + η2 − 2η(f (x)− f (x∗)).
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Known Algorithms II

Center of Gravity Method

n log(1/�) steps.

Projected Subgradient Descent

1/�2 steps.

Fix �

Dimension n →

1 1/�2 1/�4

[BJLLS ‘19]
Ω(1/�2) queries

Classical: Randomized

Theorem (Garg-Kothari-Netrapalli-S. ‘20)
For any � > 0, there is a family of 1-Lipschitz functions {f : Rn → R}
with n = Θ(1/�2) such that any randomized algorithm solving
first-order convex optimization on these requires Ω(1/�2) queries.
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Theme for Lower Bounds

• Find functions that encode information.

• �-minimizing f =⇒ Learning the encoded information.

• Each query should access the information in a controlled
manner.

5



Lower Bounds

Randomized Lower Bound



The Base Function

f : Rn → R

f (x) = max{x1, x2, . . . , xn}.

6



The Base Function

f : Rn → R

f (x) = max{x1, x2, . . . , xn}.

Minimum = − 1√
n ,

6



The Base Function

f : Rn → R

f (x) = max{x1, x2, . . . , xn}.

Minimum = − 1√
n , at x =

�
− 1√

n , . . . ,−
1√
n

�
.

6



The Base Function

f : Rn → R

f (x) = max{x1, x2, . . . , xn}.

Minimum = − 1√
n , at x =

�
− 1√

n , . . . ,−
1√
n

�
.

If xi is a maximum, then ei is a subgradient.
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n , at x =
�
− z1√

n , . . . ,−
zn√

n

�
.

Set � = .9√
n .

The behaviour of f
z1 z2 z3 z4 zn

0

x1 x2 x3 x4 xn
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Function Class

z ∈ {+1,−1}n

fz(x) = max{z1x1, z2x2, . . . , znxn}.
Minimum = − 1√

n , at x =
�
− z1√

n , . . . ,−
zn√

n

�
.

Set � = .9√
n .

The behaviour of f
z1 z2 z3 z4 zn

0

x1 x2 x3 x4 xn

++ − + −

Requires Ω(n) = Ω(1/�2)

queries.
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Quantum Reality

Particles can be in a superposition of states.

α|Left Slit�+ β|Right Slit�, with |α|2 + |β|2 = 1.

Each component of the superposition “evolves” as it would have
without the superposition.

|Left Slit� �→ |Left Spread� and |Right Slit� �→ |Right Spread�.

The actual state is the sum of the states of each component:
α|Left Spread�+ β|Right Spread�. 8
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2memory size in bits states.

• A quantum computer’s memory can be in a superposition of
these ‘base’ states.

|φ�MEMORY =
�

m∈{0,1}memory size

αm|m�MEMORY with
�

|αm|2 = 1.

|φ�MEMORY , where φ ∈ C2memory size
and �φ�2 = 1.

• Permitted operations are those that preserve norms.

• Can apply a unitary M to the state |φ� to get the new state |Mφ�.
• Every base state gets mapped to a valid superposition.
• Each of these mappings are orthonormal.
• Just changing the basis.
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Quantum Tricks

• Can take advantage of Fourier transforms.

• The vectors

1√
N




1
1
1
...
1




,
1√
N




1
ω

ω2

...
ωN−1




,
1√
N




1
ω2

ω4

...
ω2(N−1)




,
1√
N




1
ω3

ω6

...
ω3(N−1)




, · · ·

are all orthonormal where ω = ei2π/N is the principal Nth root of
unity.
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Computing Gradients

f : R2 → R

Example state:

��

i

αi |xi yi �INPUT

�
|0�OUTPUT |0�OTHER VARS
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• Hope: Use less than k queries to get the result of k gradient
descent steps?

• Would join the ranks of unstructured search, period finding, vector
reconstruction etc.

For negative result, need to reformulate our question.
Use First-Order Convex Optimization as a proxy for Gradient Descent.
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Quantum Speedup
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A quantum algorithm can �-optimize the above function class in
O(

√
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For any S ⊆ [n], can find x such that

fz(x) = 1 iff
�

i∈S

zi = +

Can then use Belovs’ algorithm to learn z from such OR queries.
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Known Algorithms II

Center of Gravity Method

n log(1/�) steps.

Projected Subgradient Descent

1/�2 steps.

Fix �

Dimension n →

1 1/�2 1/�4

[CCLW ‘18]
Ω(1/�) queries

Quantum

Theorem (Garg-Kothari-Netrapalli-S. ‘20)
For any � > 0, there is a family of 1-Lipschitz functions {f : Rn → R}
with n = Θ̃(1/�4) such that any quantum algorithm solving first-order
convex optimization on these requires Ω(1/�2) queries.
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Quantum Computing

Quantum Lower Bound
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• Input register INPUT with orthogonal states {|x�}x∈Rn

(rather for a discretization of Rn)

• Oracle Of ‘answers’ function value and subgradient queries.

Usually

Of |x�INPUT |b�OUTPUT = |x�INPUT |b ⊕ “f (x),∇f (x)”�OUTPUT

• For f , f � s.t. f (x) = f �(x) and ∇f (x) = ∇f �(x):

Of |x�INPUT |φ�REST = Of � |x�INPUT |φ�REST
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The Base Function

“Complexity of Highly Parallel Non-Smooth Convex Optimization”
- Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, Aaron Sidford
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query. (with high probability)

• The actual, corrupted states at the end are also close.

• Actual, corrupted algorithm nearly the same.
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• Actual and k − 1-times corrupted algorithms are nearly the same.

• The k − 1-times corrupted state is independent of vk given
v1, . . . , vk−1.

• The k − 1-times corrupted algorithm fails.

Success probability of the actual algorithm is also small.

Actual function used is slightly modified to account for queries outside B.

n can be as small as 1/�6 for the above argument.

Modifications taken from Bubeck et al. can bring n down to 1/�4.
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Accelerated Gradient Descent

When the function is guaranteed to not have a rapid change of slope,
the optimal algorithm is Accelerated Gradient Descent.

Accelerated Gradient Descent is also dimension-independent.

Quantum can’t do better here either.

Similar proof to the one shown, but the function requires smoothing.
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Open Problems



Quantum computers can’t speed up gradient descent in general.
Yet...

• What is the quantum complexity of convex optimization in small
dimensions?

22



Quantum computers can’t speed up gradient descent in general.
Yet...

• What is the quantum complexity of convex optimization in small
dimensions?

• What other classes of convex optimization problems get quantum
speedups?

22



Quantum computers can’t speed up gradient descent in general.
Yet...

• What is the quantum complexity of convex optimization in small
dimensions?

• What other classes of convex optimization problems get quantum
speedups?

• What is the quantum complexity of optimizing the function class

fV (x) = max{�v1, x�, �v2, x�, . . . , �vk , x�}?
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