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Compute the function at a point.
Find the gradient at that point.
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Repeat.

» Magical performance in high dimensions.
* Very useful for finding optimal parameters.
» Finding gradients:

« Hard: Requiresdimension many function evaluations.
« Easy: Cheap Gradient Principle [GW ‘08]
Compute f(x), Vf(x) in time linear in computing f(x).

e Guarantees?
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The Task
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The Task

Given: a convex region B, first-order oracle access to a convex
function f: R” — R.

Find x’ € Bs.t. f(x’) < minf(x) + e.
xeB
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N Vol(B(1))
e ( vw(B(e)))

= nlog(1/e) steps.
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Center of Gravity Method

nlog(1/e) steps. Projected Subgradient Descent

(=g, X* — x) > f(x) — f(x*).

Ix* = X'||2 < |Ix* = X||? + n? — 2n(f(x) — f(x")).
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Known Algorithms Il

Center of Gravity Method Projected Subgradient Descent

nlog(1/e) steps. 1/ steps.
Fix e

Dimension n —
1 1/‘62 1/‘64
N [BJLLS ‘19

Q(1/€2) queries
Classical: Randomized

For any € > 0, there is a family of 1-Lipschitz functions {f : R" — R}
with n = ©(1/€2) such that any randomized algorithm solving
first-order convex optimization on these requires Q(1/¢?) queries.
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« Each query should access the information in a controlled
manner.
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f:R" R
f(x) = max{x1, X2, ..., Xn}.
i 1 _(_ 1 1
Minimum = — 1 at x = (_W""’_%)'

If x; is @ maximum, then g; is a subgradient.
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Function Class

ze{+1,-1}"
f(x) = max{zi X1, ZoXz, . . ., ZnXn}.
Minimum = — -, at x = (7%7.”’7%)_
Sete = \%'

The behaviour of f
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Function Class

ze{+1,-1}"
f(x) = max{zi X1, ZoXz, . . ., ZnXn}.
Minimum = — -, at x = (7%7.”’7%)_
Sete = \%'

The behaviour of f
Z4 Z> Z3 Z4 Zn

Xy Xe Xz X2 Xp Requires Q(n) = Q(1/€?)
queries.
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Quantum Reality

double-
slit screen

Electrons

T s -

electron
beam gun

interference
pattern

Particles can be in a superposition of states.

a|Left Slit) + |Right Slit), with |a|? + [8> = 1.

Each component of the superposition “evolves” as it would have
without the superposition.

|Left Slit) — |Left Spread) and |Right Slit) — |Right Spread).

The actual state is the sum of the states of each component:
a|Left Spread) + S|Right Spread). 8
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Quantum Computer

* A classical computer has a memory that is in one of
omemory size in bits states.

* A quantum computer’s memory can be in a superposition of
these ‘base’ states.

|&) MEMoRY = Z am|M) memory With Z lam[® = 1.

me {0,1}memory size

szemory size

|#) memory » Where ¢ € and [|g2 = 1.
» Permitted operations are those that preserve norms.

+ Can apply a unitary M to the state |¢) to get the new state |[M¢).
» Every base state gets mapped to a valid superposition.
» Each of these mappings are orthonormal.

 Just changing the basis. 56 ) — <w>



Quantum Tricks

» Can take advantage of Fourier transforms.
» The vectors

1 1 1 1

1 w W W
S , L ; i w? . i w® oa
wWwil.l'w| W L R

1. w/\;—1 Cuz(l;l—1) w3(/;l—1)

are all orthonormal where w = €27/N is the principal Nth root of
unity.
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f:R2 5 R, f(x,y) = ax + by
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Computing Gradients

f:R? 5 R, f(x,y) = ax + by
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Computing Gradients

f:R? 5 R, f(x,y) = ax + by
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Computing Gradients

\
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f:R2 5 R, f(x,y) = ax + by
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Computing Gradients

F: )Kh’hlr{ Z q/u(rfto

f:R? 5 R, f(x,y) = ax + by
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Can quantum “do gradient descent” faster?

+ Can find gradient with 2 queries to function oracle. [Jordan ‘05]

* Hope: Use less than k queries to get the result of k gradient
descent steps?

» Would join the ranks of unstructured search, period finding, vector
reconstruction etc.

For negative result, need to reformulate our question.
Use First-Order Convex Optimization as a proxy for Gradient Descent.
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ze{+1,-1}"
fz(x) = max{z1 X1, ZoXo, ..., ZnXn}.
Minimum = —\1—%, at x = (—%,...,—%).
Sete = 'Tgn.

A quantum algorithm can e-optimize the above function class in

O(v/n) queries.
For any S C [n], can find x such that

B(x)=1iff \/ z =+
i€eS

Can then use Belovs’ algorithm to learn z from such OR queries.
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Known Algorithms Il

Center of Gravity Method
nlog(1/e) steps.

lo L‘/&\\ Fix e
(e (\F\ § Dimension n —

1MH54
, 1CCHTTE " (L) e
_n.(://b & Q(1/¢) queries C") [

Quantum

Projected Subgradient Descent

1/€? steps.

Theorem (Garg-Kothari-Netrapalli-S. “20)

For any ¢ > 0, there is a family of 1-Lipschitz functions {f : R" — R}

with n = ©(1/€*) such that any quantum algorithm solving first-order
convex optimization on these requires Q(1/€?) queries.



Quantum Computing

Quantum Lower Bound
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The Query Model

We are provided with an oracle Oy to access the unknown function f.

* Input register INPUT with orthogonal states {|x) }xern
(rather for a discretization of R”)

 Oracle O ‘answers’ function value and subgradient queries.
Usually

Or|x) nput|b) outrut = |X)nput|b @ “f(X), VE(X)") outPUT

» For f,f' s.t. f(x) = f'(x) and Vf(x) = Vf'(x):

Os|x) nput|d) REST = OF |X) INPUT |®) REST



The Base Function

“Complexity of Highly Parallel Non-Smooth Convex Optimization”
- Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, Aaron Sidford
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The Function Class

V = (v1, vo,..., V) is a set of k orthonormal vectors in R".

fv(x) = max{(v1, X), (v2, X) —7,(v3,X) —27,..., (Vk, X) — (k = 1)7}.

A =~ L ~_M V2 Y
Minimum =~ ﬁ,atx N iy N
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The behaviour of f
Let x € R" with ||x|| = 1.

Let v4,..., v, be orthonormal vectors sampled uniformly at random.
Y
0 — 1/vn
-1/v/n
-
N
V']_A" [\/\Q/,*) X
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Vo throughrandom from n — 1 dimensional space. 17
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V = (v1, vo,..., V) is a set of k orthonormal vectors in R".

fu(x) = max{{vy, X), (Va, X) — v, (v, X) — 27, ..., (Vk, X) — (k — 1)7}.

Ao g il ~_M V2 Y
Minimum =~ \/E,atx iy e

— 43

The behaviour of f

Let x € R" with ||x|| = 1.

Let vq, ..., v, be orthonormal vectors sampled uniformly at random.
Y
1/v/n
° =—T——1/vh

-




The Function Class

VZ(V1,V2,...

fu(x) = max{(vq, X}, (Va, X) — 7, (v3,X) — 2,..

Minimum ~ —

\/E’

1

at x ~ —

vk

V4

vk
Sete= -2,

Vo

, Vi) is a set of k orthonormal vectors in R".

- (Vi X) — (kK= 1)}

Vk

The behaviour of f
Let x € R" with ||x|| = 1.

Let v4,..., v, be orthonormal vectors sampled uniformly at random.
Y
0 1/vn
———1/vn
-

vk still nearly at random from n — k dimensional space.

Can’t output e-optimal point.
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) ¢a)
) ¢s)

pass through oracle for fy/(x)
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The Hybrid Argument

First Corrupted
query answer
X1)|¢1) 1X1)[41)
+|X2>‘¢2> pass through oracle for f(V1)(x)=(v1,x> +|X2>|1/)2>
+|x3)|¢3) +[X3)[03)
+|xa)|B4) +|Xa)|ba)
+[Xs5)|#s) +[Xs) |15)

» Changing oracle #1 barely changes the resulting state after 1
query. (with high probability)

» The actual, corrupted states at the end are also close.

* Actual, corrupted algorithm nearly the same.



The Hybrid Argument: Second query

Second

query
(corrupted)



The Hybrid Argument: Second query

Second

query
(corrupted)

pass through oracle for fy(x)




The Hybrid Argument: Second query

Second Second
query answer
(corrupted) (corrupted)
x1)|71) [x1)|x1)
+|x2)|72) pass through oracle for f,(x) +1x2)[x2)
+[X3)|73) +[x3)]x3)
+|Xa)|74) +[Xa)]xa)
+|x5)|75) +1x5) | x5)



The Hybrid Argument: Second query

Second
Second
query answer
twice
(corrupted) (
corrupted)
[X1)|71)
+|X >|7_ > pass through oracle for f(v17V2)(ﬁ:max{<V1,X),{Vg,X)*’y} |X1>‘X1>
2 2
i) +1X2) X2)
3)|73
el +1X3)x3)
4)|T4
s} +(Xa) [ xa)
5)|T5
N +[Xs5)|xs)



The Hybrid Argument: Second query

Second
Second
uery answer
?corru ted) (twice
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[X1)|71)
+|X >|7_ > pass through oracle for fy, v,)(X)=max{(vi,x),(v2,x)—~7} |X1>‘X1>
2 2
)7} +|X2) [x2)
X3)|73
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+1x5)7) g oy e %) x4)
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foog 5'(- Ju e Lort
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» Changing oracle #2 barely changes the resulting state after 2
queries. (with high probability)
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The Hybrid Argument: After kK — 1 queries

» Actual and k — 1-times corrupted algorithms are nearly the same.

» The k — 1-times corrupted state is independent of v, given
Vi, oo, V1.

» The k — 1-times corrupted algorithm fails.
Success probability of the actual algorithm is also small.
Actual function used is slightly modified to account for queries outside B.
ncan be as small as 1/¢® for the above argument.

Modifications taken from Bubeck et al. can bring n down to 1/¢*.

20
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Accelerated Gradient Descent

When the function is guaranteed to not have a rapid change of slope,
the optimal algorithm is Accelerated Gradient Descent.

Accelerated Gradient Descent is also dimension-independent.
Quantum can’t do better here either.

Similar proof to the one shown, but the function requires smoothing.
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Quantum computers can’t speed up gradient descent in general.

Yet...
» What is the quantum complexity of convex optimization in small
dimensions? n < %.‘
» What other classes of convex optimization problems get quantum
speedups?

» What is the quantum complexity of optimizing the function class

fv(x) = max{{vy, x), (vo, X), ..., (v, X)}?

22
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